cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225567 Primes with nonzero digits such that sum of cubes of digits equal to square of sums.

This page as a plain text file.
%I A225567 #40 Aug 11 2015 17:25:08
%S A225567 1423,2143,2341,4231,12253,21523,22153,22531,23251,25321,32251,35221,
%T A225567 36343,36433,43633,52321,64333,114451,144511,224461,244261,246241,
%U A225567 365557,415141,424261,426421,446221,446461,451411,462421,466441,541141,555637,556537,556573
%N A225567 Primes with nonzero digits such that sum of cubes of digits equal to square of sums.
%C A225567 Largest term of this sequence is the 20-digit prime 99151111111111111111.
%C A225567 The Pagni article mentioned below has no bearing on this problem because it deals with the well-known identity sum_{i=1..n} i^3 = (sum_{i=1..n} i)^2. However, the article is interesting. - _T. D. Noe_, Jul 26 2013
%C A225567 This sequence has exactly 14068465 provable primes. This result required about one hour of Mathematica on fairly fast computer having 16 GB of memory. - _T. D. Noe_, Jul 30 2013
%H A225567 T. D. Noe, <a href="/A225567/b225567.txt">Table of n, a(n) for n = 1..1201</a> (terms < 10^7)
%H A225567 David Pagni, <a href="http://www.jstor.org/stable/3620410">82.27 An interesting number fact</a>, The Mathematical Gazette 82:494 (1998), pp. 271-273.
%H A225567 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_158.htm">PP&P Puzzle 158: Sum of Cubes equal to Square of Sum</a>
%e A225567 a(5) = 12253 since 1^3 + 2^3 + 2^3 + 5^3 + 3^3 = (1 + 2 + 2 + 5 + 3)^2.
%t A225567 (* let tz[[i]] be numbers computed in A227073 *) Select[tz, PrimeQ] (* _T. D. Noe_, Jul 30 2013 *)
%t A225567 pQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&Total[idn^3] == Total[ idn]^2]; Select[Prime[Range[50000]],pQ] (* _Harvey P. Dale_, Sep 17 2013 *)
%o A225567 (PARI)forprime(n=1, 10^7, v=digits(n); if(sum(i=1, length(v), v[i]^3)==sum(i=1, length(v), v[i])^2 & setsearch(Set(v),0)!=1, print1(n", ")))
%Y A225567 Cf. A055012 (sum of cubes of digits), A118881 (square of sum of the digits).
%Y A225567 Cf. A227072, A227073.
%K A225567 nonn,base,fini,easy
%O A225567 1,1
%A A225567 _Balarka Sen_, Jul 26 2013
%E A225567 Corrected by _T. D. Noe_, Jul 26 2013