This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225581 #36 Sep 07 2021 19:49:37 %S A225581 3,5,3,3,3,5,3,3,7,5,3,3,3,5,3,7,3,11,3,5,5,5,5,3,5,11,17,3,3,5,47,11, %T A225581 5,5,3,3,3,5,13,11,3,3,5,5,5,11,11,11,3,3,7,5,3,5,3,5,5,3,5,13,11,7,3, %U A225581 5,11,5,3,5,5,3,19,3,3,5,29,17,3,23,3,5,7,5,5,71,3,5,5,3,3,47,3,5,3,11,3,5,3,3,11,5,23 %N A225581 a(n) is the minimal odd prime q such that prime(n)*q + prime(n) + q is prime. %H A225581 John-Å. W. Olsen, <a href="/A225581/b225581.txt">Table of n, a(n) for n = 1..1000</a> %e A225581 n = 1; p = 2; q = 3; %e A225581 n = 2; p = 3; q = 5; %e A225581 n = 3; p = 5; q = 3; %e A225581 n = 4; p = 7; q = 3; %t A225581 a[n_] := Block[{q = 3, p = Prime@n},While[! PrimeQ[p*q + p + q], q = NextPrime@q]; q]; Array[a, 101] (* _Giovanni Resta_, May 11 2013 *) %o A225581 (PARI) a(n) = my(q=3, p=prime(n)); while(!isprime(p*q+p+q), q = nextprime(q+1)); q; \\ _Michel Marcus_, Sep 06 2021 %o A225581 (Python) %o A225581 from sympy import isprime, nextprime, prime %o A225581 def a(n): %o A225581 q, p = 3, prime(n) %o A225581 while not isprime(p*q + p + q): q = nextprime(q) %o A225581 return q %o A225581 print([a(n) for n in range(1, 102)]) # _Michael S. Branicky_, Sep 06 2021 %Y A225581 Cf. A000040. %K A225581 nonn,easy %O A225581 1,1 %A A225581 _John-Å. W. Olsen_, May 11 2013