cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225597 Triangle read by rows: T(n,k) = total number of parts of all regions of the set of partitions of n whose largest part is k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 3, 5, 1, 3, 4, 5, 7, 1, 4, 5, 7, 7, 11, 1, 4, 6, 8, 9, 11, 15, 1, 5, 7, 11, 10, 15, 15, 22, 1, 5, 9, 12, 13, 17, 19, 22, 30, 1, 6, 10, 16, 15, 22, 21, 29, 30, 42, 1, 6, 12, 18, 19, 25, 26, 32, 38, 42, 56, 1, 7, 14, 23, 22, 33, 29, 41, 42, 54, 56, 77
Offset: 1

Views

Author

Omar E. Pol, Aug 02 2013

Keywords

Comments

For the definition of "region" see A206437.
T(n,k) is also the number of parts that end in the k-th column of the diagram of regions of the set of partitions of n (see Example section).

Examples

			For n = 5 and k = 3 the set of partitions of 5 contains two regions whose largest part is 3, they are third region which contains three parts [3, 1, 1] and the sixth region which contains only one part [3]. Therefore the total number of parts is 3 + 1 = 4, so T(5,3) = 4.
.
.    Diagram    Illustration of parts ending in column k:
.    for n=5      k=1   k=2     k=3       k=4        k=5
.   _ _ _ _ _                                  _ _ _ _ _
.  |_ _ _    |                _ _ _           |_ _ _ _ _|
.  |_ _ _|_  |               |_ _ _|  _ _ _ _       |_ _|
.  |_ _    | |          _ _          |_ _ _ _|        |_|
.  |_ _|_  | |         |_ _|  _ _ _      |_ _|        |_|
.  |_ _  | | |          _ _  |_ _ _|       |_|        |_|
.  |_  | | | |      _  |_ _|     |_|       |_|        |_|
.  |_|_|_|_|_|     |_|   |_|     |_|       |_|        |_|
.
k = 1 2 3 4 5
.
The 5th row lists:  1     3       4         5          7
.
Triangle begins:
1;
1,  2;
1,  2,  3;
1,  3,  3,  5;
1,  3,  4,  5,  7;
1,  4,  5,  7,  7, 11;
1,  4,  6,  8,  9, 11, 15;
1,  5,  7, 11, 10, 15, 15, 22;
1,  5,  9, 12, 13, 17, 19, 22, 30;
1,  6, 10, 16, 15, 22, 21, 29, 30, 42;
1,  6, 12, 18, 19, 25, 26, 32, 38, 42, 56;
1,  7, 14, 23, 22, 33, 29, 41, 42, 54, 56, 77;
		

Crossrefs

Column 1 is A000012. Column 2 are the numbers => 2 of A008619. Row sums give A006128, n>=1. Right border gives A000041, n>=1. Second right border gives A000041, n>=1.

A225599 Triangle read by rows: T(n,k) = sum of all parts that start in the k-th column of the diagram of regions of the set of partitions of n.

Original entry on oeis.org

1, 3, 1, 6, 1, 2, 12, 1, 4, 3, 20, 1, 4, 5, 5, 35, 1, 6, 8, 9, 7, 54, 1, 6, 10, 12, 11, 11, 86, 1, 8, 13, 20, 14, 19, 15, 128, 1, 8, 18, 23, 22, 25, 23, 22, 192, 1, 10, 21, 34, 30, 37, 29, 36, 30, 275, 1, 10, 26, 41, 41, 48, 41, 45, 46, 42, 399, 1, 12, 32, 56, 53, 72, 52, 67, 58, 66, 56
Offset: 1

Views

Author

Omar E. Pol, Aug 02 2013

Keywords

Comments

For the construction of the diagram see A225600.

Examples

			For n = 5 and k = 3 the diagram of regions of the set of partitions of 5 contains three parts that start in the third column: two parts of size 1 and one part of size 2, therefore the sum of all parts that start in column 3 is 1 + 1 + 2 = 4, so T(5,3) = 4.
.
.                       Illustration of the parts
.    Diagram             that start in column k:
.    for n=5       k=1          k=2  k=3    k=4    k=5
.   _ _ _ _ _       _ _ _ _ _
.  |_ _ _    |     |_ _ _ _ _|               _ _
.  |_ _ _|_  |     |_ _ _|_                 |_ _|   _
.  |_ _    | |     |_ _ _ _|          _ _          |_|
.  |_ _|_  | |     |_ _|_            |_ _|   _     |_|
.  |_ _  | | |     |_ _ _|            _     |_|    |_|
.  |_  | | | |     |_ _|         _   |_|    |_|    |_|
.  |_|_|_|_|_|     |_|          |_|  |_|    |_|    |_|
.
k = 1 2 3 4 5
.
The 5th row lists:  20           1    4      5      5
.
Triangle begins:
1;
3,   1;
6,   1,  2;
12,  1,  4,  3;
20,  1,  4,  5,  5;
35,  1,  6,  8,  9,  7;
54,  1,  6, 10, 12, 11, 11;
86,  1,  8, 13, 20, 14, 19, 15;
128, 1,  8, 18, 23, 22, 25, 23, 22;
192, 1, 10, 21, 34, 30, 37, 29, 36, 30;
275, 1, 10, 26, 41, 41, 48, 41, 45, 46, 42;
399, 1, 12, 32, 56, 53, 72, 52, 67, 58, 66, 56;
		

Crossrefs

Column 1-2: A006128, A000012. Row sums give A066186. Right border gives A000041.
Showing 1-2 of 2 results.