A225605 a(1) = least k such that 1/3 < H(k) - 1/3; a(2) = least k such that H(a(1)) - H(3) < H(k) - H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538, 733591315, 1349284789, 2481721641
Offset: 1
Examples
The first two values (a(1),a(2)) = (5,9) match the beginning of the following inequality chain: 1/3 < 1/4 + 1/5 < 1/6 + 1/7 + 1/8 + 1/9 < ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 3; a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A225605, Peter J. C. Moses, Jul 12 2013 *)
Formula
a(n) = A192804(n+4) (conjectured).
a(n) = 2*a(n-1) - a(n-4) (conjectured).
G.f.: (5 - x - 2 x^2 - 3 x^3)/(1 - 2 x + x^4) (conjectured)
Comments