cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225610 Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.

This page as a plain text file.
%I A225610 #37 Aug 05 2013 03:39:35
%S A225610 1,4,10,18,33,52,87,130,202,295,436,617,887,1226,1709,2327,3173,4244,
%T A225610 5691,7505,9907,12917,16822,21690,27947,35685,45506,57625,72836,91500,
%U A225610 114760,143143,178235,220908,273268,336670,414041,507298,620455,756398,920470
%N A225610 Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.
%C A225610 a(n) is also the total number of toothpicks in a toothpick structure which represents a diagram of regions of the set of partitions of n, n >= 1. The number of horizontal toothpicks is A225596(n). The number of vertical toothpicks is A093694(n). The difference between vertical toothpicks and horizontal toothpicks is A000041(n) - n = A000094(n+1). The total area (or total number of cells) of the diagram is A066186(n). The number of parts in the k-th region is A194446(k). The area (or number of cells) of the k-th region is A186412(k). For the definition of "region" see A206437. For a minimalist version of the diagram (which can be transformed into a Dyck path) see A211978. See also A225600.
%H A225610 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>
%H A225610 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A225610 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%F A225610 a(n) = 2*A006128(n) + A000041(n) + n = A211978(n) + A133041(n) = A093694(n) + A006128(n) + n = A093694(n) + A225596(n).
%e A225610 For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
%e A225610 .                               Diagram of regions
%e A225610 Partitions of 7                 and partitions of 7
%e A225610 .                                   _ _ _ _ _ _ _
%e A225610 7                               15 |_ _ _ _      |
%e A225610 4 + 3                              |_ _ _ _|_    |
%e A225610 5 + 2                              |_ _ _    |   |
%e A225610 3 + 2 + 2                          |_ _ _|_ _|_  |
%e A225610 6 + 1                           11 |_ _ _      | |
%e A225610 3 + 3 + 1                          |_ _ _|_    | |
%e A225610 4 + 2 + 1                          |_ _    |   | |
%e A225610 2 + 2 + 2 + 1                      |_ _|_ _|_  | |
%e A225610 5 + 1 + 1                        7 |_ _ _    | | |
%e A225610 3 + 2 + 1 + 1                      |_ _ _|_  | | |
%e A225610 4 + 1 + 1 + 1                    5 |_ _    | | | |
%e A225610 2 + 2 + 1 + 1 + 1                  |_ _|_  | | | |
%e A225610 3 + 1 + 1 + 1 + 1                3 |_ _  | | | | |
%e A225610 2 + 1 + 1 + 1 + 1 + 1            2 |_  | | | | | |
%e A225610 1 + 1 + 1 + 1 + 1 + 1 + 1        1 |_|_|_|_|_|_|_|
%e A225610 .
%e A225610 .                                   1 2 3 4 5 6 7
%e A225610 .
%e A225610 Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
%e A225610 .                                         _ _ _ _ _ _
%e A225610 .                                        |_ _ _      |
%e A225610 .                                        |_ _ _|_    |
%e A225610 .                                        |_ _    |   |
%e A225610 .                             _ _ _ _ _  |_ _|_ _|_  |
%e A225610 .                            |_ _ _    | |_ _ _    | |
%e A225610 .                   _ _ _ _  |_ _ _|_  | |_ _ _|_  | |
%e A225610 .                  |_ _    | |_ _    | | |_ _    | | |
%e A225610 .           _ _ _  |_ _|_  | |_ _|_  | | |_ _|_  | | |
%e A225610 .     _ _  |_ _  | |_ _  | | |_ _  | | | |_ _  | | | |
%e A225610 . _  |_  | |_  | | |_  | | | |_  | | | | |_  | | | | |
%e A225610 .|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
%e A225610 .
%e A225610 . 4    10     18       33         52          87
%Y A225610 Cf. A000041, A000094, A006128, A066186, A093694, A133041, A135010, A138137, A139250, A139582, A141285, A182377, A186114, A186412, A187219, A194446, A194447, A206437, A207779, A211978, A220517, A225596, A225600.
%K A225610 nonn
%O A225610 0,2
%A A225610 _Omar E. Pol_, Jul 29 2013