cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225617 Number of (strict) inversions in all standard Young tableaux of size n.

This page as a plain text file.
%I A225617 #30 Feb 18 2014 11:59:36
%S A225617 0,0,1,7,39,188,884,4116,19108,89926,427386,2068934,10163358,50888024,
%T A225617 258983668,1342912608,7079970072,38000183102,207309599246,
%U A225617 1150329076074,6484351459090,37143321514076,216001121263896,1275332898098744,7639400455469944,46423461664822648
%N A225617 Number of (strict) inversions in all standard Young tableaux of size n.
%C A225617 A (strict) inversion is a pair of cells (i,j) with i<j where j appears strictly below and strictly left of i. [_Joerg Arndt_, Feb 18 2014]
%H A225617 Alois P. Heinz, <a href="/A225617/b225617.txt">Table of n, a(n) for n = 1..50</a>
%H A225617 M. Shynar, <a href="http://www-igm.univ-mlv.fr/~fpsac/FPSAC04/ARTICLES/Shynar.pdf">On Inversions in Standard Young Tableaux</a>
%H A225617 Wikipedia, <a href="http://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%p A225617 b:= proc(l) option remember; `if`({l[]}={0}, [1, 0],
%p A225617       add(`if`(l[j]>`if`(j=1, 0, l[j-1]), (f->f+[0, f[1]*
%p A225617       add(l[h]-l[j], h=j+1..nops(l))])
%p A225617       (b(subsop(j=l[j]-1, l))), 0), j=1..nops(l)))
%p A225617     end:
%p A225617 g:= proc(n, i, l) `if`(n=0 or i=1, b([1$n, l[]]),
%p A225617       `if`(i<1, 0, g(n, i-1, l)+
%p A225617       `if`(i>n, 0, g(n-i, i, [i, l[]]))))
%p A225617     end:
%p A225617 a:= n-> g(n$2, [])[2]:
%p A225617 seq(a(n), n=1..23);  # _Alois P. Heinz_, Aug 09 2013
%t A225617 inversions[t_?TableauQ]:= Block[{t0},t0=(First[Position[t,#1]]&) /@ Range[Max[t]]; Cases[Table[{i,j},{j,2,Max[t]},{i,j-1}],{i_,j_}/; MatchQ[t0[[i]]-t0[[j]],{_?Negative,_?Positive}]->{i,j},{2}]];
%t A225617 Table[Tr[Length[inversions[#]]& /@ Tableaux[n]],{n,13}]
%Y A225617 Cf. A225618 (weak inversions), A161125 (descent numbers).
%Y A225617 Cf. A000085 (Young tableaux with n cells).
%K A225617 nonn
%O A225617 1,4
%A A225617 _Wouter Meeussen_, Aug 04 2013
%E A225617 Terms verified and more terms added, _Joerg Arndt_, Aug 07 2013
%E A225617 a(19)-a(26) from _Alois P. Heinz_, Aug 08 2013