cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225618 Number of weak inversions in all standard Young tableaux of size n.

This page as a plain text file.
%I A225618 #31 Feb 18 2014 12:00:07
%S A225618 0,1,6,29,125,538,2282,9916,43416,195206,891638,4176002,19920914,
%T A225618 97248184,483752596,2458123328,12722535412,67155870194,360792258750,
%U A225618 1974047659038,10983669569446,62162472053580,357454683655920,2088497013864312,12387836332741800
%N A225618 Number of weak inversions in all standard Young tableaux of size n.
%C A225618 A weak inversion is a pair of cells (i,j) with i<j where j appears weakly below and weakly left of i. [_Joerg Arndt_, Feb 18 2014]
%H A225618 Alois P. Heinz, <a href="/A225618/b225618.txt">Table of n, a(n) for n = 1..50</a>
%H A225618 M. Shynar, <a href="http://www-igm.univ-mlv.fr/~fpsac/FPSAC04/ARTICLES/Shynar.pdf">On Inversions in Standard Young Tableaux</a>
%H A225618 Wikipedia, <a href="http://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%p A225618 b:= proc(l) option remember; `if`({l[]}={0}, [1, 0],
%p A225618       add(`if`(l[j]>`if`(j=1, 0, l[j-1]), (f->f+[0, f[1]*
%p A225618       add(l[h]-l[j]+1, h=j+1..nops(l))])
%p A225618       (b(subsop(j=l[j]-1, l))), 0), j=1..nops(l)))
%p A225618     end:
%p A225618 g:= proc(n, i, l) `if`(n=0 or i=1, b([1$n, l[]]),
%p A225618       `if`(i<1, 0, g(n, i-1, l)+
%p A225618       `if`(i>n, 0, g(n-i, i, [i, l[]]))))
%p A225618     end:
%p A225618 a:= n-> g(n$2, [])[2]:
%p A225618 seq(a(n), n=1..23);  # _Alois P. Heinz_, Aug 09 2013
%t A225618 inversions[t_?TableauQ]:=Block[{t0},t0=(First[Position[t,#1]]&) /@ Range[Max[t]]; Cases[Table[{i,j},{j,2,Max[t]},{i,j-1}],{i_,j_}/;MatchQ[t0[[i]]-t0[[j]],{_?Negative,_?Positive}]->{i,j},{2}]];
%t A225618 Table[Tr[Length[weakinversions[#]]& /@ Tableaux[n]],{n,12}]
%Y A225618 Cf. A225617 (strict inversions), A161125 (descent numbers).
%Y A225618 Cf. A000085 (Young tableaux with n cells).
%K A225618 nonn
%O A225618 1,3
%A A225618 _Wouter Meeussen_, Aug 04 2013
%E A225618 Terms verified and more terms added, _Joerg Arndt_, Aug 07 2013
%E A225618 a(19)-a(25) from _Alois P. Heinz_, Aug 08 2013