cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225622 A(n,k) is the total number of parts in the set of partitions of an n X k rectangle into integer-sided squares, considering only the list of parts; square array A(n,k), n>=1, k>=1, read by antidiagonals.

This page as a plain text file.
%I A225622 #32 Oct 27 2023 22:05:12
%S A225622 1,2,2,3,5,3,4,9,9,4,5,15,16,15,5,6,21,31,31,21,6,7,30,47,59,47,30,7,
%T A225622 8,38,73,102,102,73,38,8,9,50,101,170,156,170,101,50,9,10,60,142,250,
%U A225622 307,307,250,142,60,10,11,75,185,375,460,529,460,375,185,75,11
%N A225622 A(n,k) is the total number of parts in the set of partitions of an n X k rectangle into integer-sided squares, considering only the list of parts; square array A(n,k), n>=1, k>=1, read by antidiagonals.
%H A225622 Alois P. Heinz, <a href="/A225622/b225622.txt">Antidiagonals n = 1..23, flattened</a> (Antidiagonals n = 1..14 from Christopher Hunt Gribble)
%H A225622 Christopher Hunt Gribble, <a href="/A225622/a225622.cpp.txt">C++ program</a>
%F A225622 A(n,1) = A000027(n) = n.
%F A225622 A(n,2) = A195014(n) = (n+1)(5n+3)/8 when n is odd
%F A225622                       and 5n(n+2)/8 when n is even.
%e A225622 The square array starts:
%e A225622 1    2    3    4    5    6    7    8    9   10   11   12 ...
%e A225622 2    5    9   15   21   30   38   50   60   75   87  105 ...
%e A225622 3    9   16   31   47   73  101  142  185  244  305  386 ...
%e A225622 4   15   31   59  102  170  250  375  523  726  962 ...
%e A225622 5   21   47  102  156  307  460  711 1040 1517 ...
%e A225622 6   30   73  170  307  529  907 1474 2204 ...
%e A225622 7   38  101  250  460  907 1351 2484 ...
%e A225622 8   50  142  375  711 1474 2484 ...
%e A225622 9   60  185  523 1040 2204 ...
%e A225622 ...
%e A225622 A(3,2) = 9 because there are 9 parts overall in the 2 partitions of a 3 X 2 rectangle into squares with integer sides.  One partition comprises 6 1 X 1 squares and the other 2 1 X 1 squares and 1 2 X 2 square giving 9 parts in total.
%p A225622 b:= proc(n, l) option remember; local i, k, s, t;
%p A225622       if max(l[])>n then {} elif n=0 or l=[] then {0}
%p A225622     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
%p A225622     else for k do if l[k]=0 then break fi od; s:={};
%p A225622          for i from k to nops(l) while l[i]=0 do s:=s union
%p A225622              map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
%p A225622                  1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
%p A225622          od; s
%p A225622       fi
%p A225622     end:
%p A225622 A:= (n, k)-> add(coeff(add(j, j=b(max(n, k),
%p A225622             [0$min(n, k)])), x, i), i=1..n):
%p A225622 seq(seq(A(n, 1+d-n), n=1..d), d=1..15); # _Alois P. Heinz_, Aug 04 2013
%t A225622 $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[{v}, v + x^(1+i-k) ], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]]]]]]; s]];A[n_, k_] := Sum[Coefficient[Sum[j, {j, b[Max[n, k], Array[0&, Min[n, k]]]}], x, i], {i, 1, n}]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* _Jean-François Alcover_, Mar 06 2015, after _Alois P. Heinz_ *)
%Y A225622 Diagonal = A226897.
%Y A225622 Cf. A034295, A224697, A225542.
%K A225622 nonn,tabl
%O A225622 1,2
%A A225622 _Christopher Hunt Gribble_, Aug 04 2013