This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225632 #27 Mar 13 2018 04:10:42 %S A225632 1,1,2,1,3,6,1,4,12,1,6,30,60,1,6,30,60,1,12,84,420,1,15,120,840,1,20, %T A225632 180,1260,2520,1,30,210,840,2520,1,30,420,4620,13860,27720,1,60,660, %U A225632 4620,13860,27720,1,60,780,8580,60060,180180,360360 %N A225632 Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value 1. %C A225632 The leftmost column of table (the initial term of each row, T(n,1)) is 1, corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition of n, after which, on the same row, each further term T(n,i) is computed by finding such a partition [p1,p2,...,pk] of n so that value of lcm(T(n,i-1), p1,p2,...,pk) is maximized, until finally A003418(n) is reached, which will be listed as the last term of row n (as the result would not change after that, if we continued the same process). %H A225632 Alois P. Heinz, <a href="/A225632/b225632.txt">Rows n = 1..150, flattened</a> %H A225632 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a> %e A225632 The first fifteen rows of table are: %e A225632 1; %e A225632 1, 2; %e A225632 1, 3, 6; %e A225632 1, 4, 12; %e A225632 1, 6, 30, 60; %e A225632 1, 6, 30, 60; %e A225632 1, 12, 84, 420; %e A225632 1, 15, 120, 840; %e A225632 1, 20, 180, 1260, 2520; %e A225632 1, 30, 210, 840, 2520; %e A225632 1, 30, 420, 4620, 13860, 27720; %e A225632 1, 60, 660, 4620, 13860, 27720; %e A225632 1, 60, 780, 8580, 60060, 180180, 360360; %e A225632 1, 84, 1260, 16380, 180180, 360360; %e A225632 1, 105, 4620, 60060, 180180, 360360; %p A225632 b:= proc(n, i) option remember; `if`(n=0, {1}, %p A225632 `if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)), %p A225632 b(n-i*j, i-1))[], j=0..n/i)})) %p A225632 end: %p A225632 T:= proc(n) option remember; local d, h, l, ll; %p A225632 l:= b(n$2); ll:= NULL; d:=1; h:=0; %p A225632 while d<>h do ll:= ll, d; h:= d; %p A225632 d:= max(seq(ilcm(h, i), i=l)) %p A225632 od; ll %p A225632 end: %p A225632 seq(T(n), n=1..20); # _Alois P. Heinz_, May 29 2013 %t A225632 b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Table[Map[Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := T[n] = Module[{d, h, l, ll}, l=b[n, n]; ll={}; d=1; h=0; While[d != h, AppendTo[ll, d]; h=d; d = Max[ Table[LCM[h, i], {i, l}]]]; ll]; Table[T[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Jul 29 2015, after _Alois P. Heinz_ *) %o A225632 (Scheme with _Antti Karttunen_'s IntSeq-library): %o A225632 (definec (A225632 n) (A225630bi (Aux_for_225632 n) (- n (A225635 (Aux_for_225632 n))))) ;; Scheme-definition for A225630bi given in A225630. %o A225632 (define Aux_for_225632 (COMPOSE -1+ (LEAST-GTE-I 1 1 A225635) 1+)) ;; Auxiliary function not submitted separately, which gives the row-number for the n-th term. %o A225632 ;; It starts as 1,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,... %Y A225632 Cf. A225634 (length of n-th row), A000793 (n>=2 gives the second column). %Y A225632 Cf. A225629 (second largest/rightmost term of n-th row). %Y A225632 Cf. A003418 (largest/rightmost term of n-th row). %Y A225632 Cf. A225630, A225631, A225635, A212721. %Y A225632 Cf. A225642 (row n starts from n instead of 1). %Y A225632 Cf. A226055 (the first term common with A225642 on the n-th row). %Y A225632 Cf. A225638 (distance to that first common term from the beginning of the row n). %Y A225632 Cf. A226056 (number of trailing terms common with A225642 on the n-th row). %K A225632 nonn,tabf %O A225632 1,3 %A A225632 _Antti Karttunen_, May 13 2013