cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225632 Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value 1.

This page as a plain text file.
%I A225632 #27 Mar 13 2018 04:10:42
%S A225632 1,1,2,1,3,6,1,4,12,1,6,30,60,1,6,30,60,1,12,84,420,1,15,120,840,1,20,
%T A225632 180,1260,2520,1,30,210,840,2520,1,30,420,4620,13860,27720,1,60,660,
%U A225632 4620,13860,27720,1,60,780,8580,60060,180180,360360
%N A225632 Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value 1.
%C A225632 The leftmost column of table (the initial term of each row, T(n,1)) is 1, corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition of n, after which, on the same row, each further term T(n,i) is computed by finding such a partition [p1,p2,...,pk] of n so that value of lcm(T(n,i-1), p1,p2,...,pk) is maximized, until finally A003418(n) is reached, which will be listed as the last term of row n (as the result would not change after that, if we continued the same process).
%H A225632 Alois P. Heinz, <a href="/A225632/b225632.txt">Rows n = 1..150, flattened</a>
%H A225632 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%e A225632 The first fifteen rows of table are:
%e A225632   1;
%e A225632   1,   2;
%e A225632   1,   3,    6;
%e A225632   1,   4,   12;
%e A225632   1,   6,   30,    60;
%e A225632   1,   6,   30,    60;
%e A225632   1,  12,   84,   420;
%e A225632   1,  15,  120,   840;
%e A225632   1,  20,  180,  1260,   2520;
%e A225632   1,  30,  210,   840,   2520;
%e A225632   1,  30,  420,  4620,  13860,  27720;
%e A225632   1,  60,  660,  4620,  13860,  27720;
%e A225632   1,  60,  780,  8580,  60060, 180180, 360360;
%e A225632   1,  84, 1260, 16380, 180180, 360360;
%e A225632   1, 105, 4620, 60060, 180180, 360360;
%p A225632 b:= proc(n, i) option remember; `if`(n=0, {1},
%p A225632       `if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),
%p A225632        b(n-i*j, i-1))[], j=0..n/i)}))
%p A225632     end:
%p A225632 T:= proc(n) option remember; local d, h, l, ll;
%p A225632       l:= b(n$2); ll:= NULL; d:=1; h:=0;
%p A225632       while d<>h do ll:= ll, d; h:= d;
%p A225632         d:= max(seq(ilcm(h, i), i=l))
%p A225632       od; ll
%p A225632     end:
%p A225632 seq(T(n), n=1..20);  # _Alois P. Heinz_, May 29 2013
%t A225632 b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Table[Map[Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := T[n] = Module[{d, h, l, ll}, l=b[n, n]; ll={}; d=1; h=0; While[d != h, AppendTo[ll, d]; h=d; d = Max[ Table[LCM[h, i], {i, l}]]]; ll]; Table[T[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Jul 29 2015, after _Alois P. Heinz_ *)
%o A225632 (Scheme with _Antti Karttunen_'s IntSeq-library):
%o A225632 (definec (A225632 n) (A225630bi (Aux_for_225632 n) (- n (A225635 (Aux_for_225632 n))))) ;; Scheme-definition for A225630bi given in A225630.
%o A225632 (define Aux_for_225632 (COMPOSE -1+ (LEAST-GTE-I 1 1 A225635) 1+)) ;; Auxiliary function not submitted separately, which gives the row-number for the n-th term.
%o A225632 ;; It starts as 1,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,...
%Y A225632 Cf. A225634 (length of n-th row), A000793 (n>=2 gives the second column).
%Y A225632 Cf. A225629 (second largest/rightmost term of n-th row).
%Y A225632 Cf. A003418 (largest/rightmost term of n-th row).
%Y A225632 Cf. A225630, A225631, A225635, A212721.
%Y A225632 Cf. A225642 (row n starts from n instead of 1).
%Y A225632 Cf. A226055 (the first term common with A225642 on the n-th row).
%Y A225632 Cf. A225638 (distance to that first common term from the beginning of the row n).
%Y A225632 Cf. A226056 (number of trailing terms common with A225642 on the n-th row).
%K A225632 nonn,tabf
%O A225632 1,3
%A A225632 _Antti Karttunen_, May 13 2013