cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225640 Array A(n,k) of iterated Landau-like functions, where on the row n=0 A(0,0)=1 and A(0,k>=1)=k, and the successive rows A(n,k) give a maximum value lcm(p1,p2,...,pj,A(n-1,k)) for all partitions {p1+p2+...+pj} of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A225640 #21 Mar 05 2025 13:44:20
%S A225640 1,1,1,2,1,1,3,2,1,1,4,6,2,1,1,5,12,6,2,1,1,6,30,12,6,2,1,1,7,30,60,
%T A225640 12,6,2,1,1,8,84,60,60,12,6,2,1,1,9,120,420,60,60,12,6,2,1,1,10,180,
%U A225640 840,420,60,60,12,6,2,1,1,11,210,1260,840,420,60,60,12,6,2,1,1
%N A225640 Array A(n,k) of iterated Landau-like functions, where on the row n=0 A(0,0)=1 and A(0,k>=1)=k, and the successive rows A(n,k) give a maximum value lcm(p1,p2,...,pj,A(n-1,k)) for all partitions {p1+p2+...+pj} of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A225640 In this array the maximization of LCM starts from partition {k} of k, instead of partition {1+1+...+1} as in A225630.
%H A225640 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%e A225640 The top-left corner of the array:
%e A225640 1, 1, 2, 3,  4,  5,  6,   7,   8,   9,    10,    11,    12, ...
%e A225640 1, 1, 2, 6, 12, 30, 30,  84, 120,  180,  210,   330,   420, ...
%e A225640 1, 1, 2, 6, 12, 60, 60, 420, 840, 1260,  840,  4620,  4620, ...
%e A225640 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 13860, 13860, ...
%e A225640 1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, ...
%e A225640 ...
%o A225640 (Scheme)
%o A225640 (define (A225640 n) (A225640bi (A025581 n) (A002262 n)))
%o A225640 (define (A225640bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm (max 1 col)) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1)))))))
%o A225640 (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
%Y A225640 Transpose: A225641.
%Y A225640 Cf. A225642, A225644, A001477 (row 0), A225646 (row 1).
%Y A225640 Rows converge towards A003418 (main diagonal of this array).
%Y A225640 See A225630 for a variant employing a similar process, but which uses 1 in column n as the initial seed for that column, instead of n.
%K A225640 nonn,tabl
%O A225640 0,4
%A A225640 _Antti Karttunen_, May 14 2013