A225671 Largest prime p(k) > p(n) such that 1/p(n) + 1/p(n+1) + ... + 1/p(k) < 1, where p(n) is the n-th prime.
3, 23, 107, 337, 853, 1621, 2971, 4919, 7757, 11657, 16103, 22193, 29251, 37699, 48523, 61051, 75479, 91459, 110563, 131641, 155501, 183581, 214177, 248593, 286063, 325883, 369979, 419449, 473647, 534029, 600623, 667531, 739523, 816769, 900997, 988651, 1083613
Offset: 1
Keywords
Examples
a(1) = 3 because 1/2 + 1/3 < 1 < 1/2 + 1/3 + 1/5 (or because the slowest-growing sequence of primes whose reciprocals sum to 1 is A075442 = 2, 3, 7, ...). a(2) = 23 because 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 < 1 < 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 + 1/29 (or because the slowest-growing sequence of odd primes whose reciprocals sum to 1 is A225669 = 3, 5, 7, 11, 13, 17, 19, 23, 967, ...).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
L = {1}; n = 0; Do[ k = Last[L]; n++; While[ Sum[ 1/Prime[i], {i, n, k}] < 1, k++]; L = Append[L, k - 1], {22}]; Prime[ Rest[L]]
-
Python
from sympy import prime def A225671(n): xn, xd, k, p = 1, prime(n), n, prime(n) while xn < xd: k += 1 po, p = p, prime(k) xn = xn*p + xd xd *= p return po # Chai Wah Wu, Apr 20 2015
Extensions
a(23)-a(37) from Chai Wah Wu, Apr 20 2015
Comments