cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225700 Denominators of coefficients arising from q-expansion of Integrate[eta[q^4]^8/eta[q^2]^4, q]/q where eta is the Dedekind eta function.

Original entry on oeis.org

2, 1, 1, 1, 10, 1, 1, 2, 1, 1, 11, 1, 26, 7, 1, 1, 17, 3, 1, 5, 1, 1, 23, 1, 50, 13, 1, 7, 29, 1, 1, 8, 11, 1, 35, 1, 1, 19, 13, 1, 82, 1, 43, 11, 1, 23, 47, 4, 1, 25, 1, 1, 53
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2013

Keywords

Comments

Gosper observes that A225699/A225700 = A008438/(2,4,6,8,10,...) and hence the coefficient of q^k in the q-expansion is 1 iff k is an odd prime (see Example section below).
Note that, as usual in the OEIS, the q-expansion has been normalized here to avoid having every other term be zero.

Examples

			q/2 + q^3 + q^5 + q^7 + (13*q^9)/10 + q^11 + q^13 + (3*q^15)/2 + q^17 + q^19 + (16*q^21)/11 + q^23 + (31*q^25)/26 + (10*q^27)/7 + q^29 + q^31 + (24*q^33)/17 + (4*q^35)/3 + q^37 + (7*q^39)/5 + q^41 + q^43 + (39*q^45)/23 + q^47 + (57*q^49)/50 + (18*q^51)/13 + q^53 + (9*q^55)/7 + (40*q^57)/29 + q^59 + q^61 + (13*q^63)/8 + (14*q^65)/11 + q^67 + (48*q^69)/35 + q^71 + q^73 + (31*q^75)/19 + (16*q^77)/13 + q^79 + (121*q^81)/82 + q^83 + (54*q^85)/43 + (15*q^87)/11 + q^89 + (28*q^91)/23 + (64*q^93)/47 + (5*q^95)/4 + q^97 + (39*q^99)/25 + q^101 + q^103 + (96*q^105)/53 + ...
		

References

  • R. W. Gosper, Posting to the Math Fun Mailing List, Jun 01 2013

Crossrefs

Cf. A225700. See A008438 for eta[q^4]^8/eta[q^2]^4.