A225720 Composite squarefree numbers n such that p+10 divides n-10 for each prime p dividing n.
10, 79222, 206965, 784090, 1673122, 2227123, 4798090, 5202571, 9196330, 13146715, 15015430, 18213595, 19342333, 21735010, 27907435, 28234018, 28240090, 37394146, 38710990, 53990695, 54772453, 70646509, 79671826, 89678830, 107251990, 114572545, 115005187, 137245690
Offset: 1
Keywords
Examples
Prime factors of 2227123 are 19, 251 and 467. We have that (2227123-10)/(19+10) = 76797, (2227123-10)/(251+10) = 8533 and (2227123-10)/(467+10) = 4669.
Programs
-
Maple
with(numtheory); A225720:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225720(10^9,-10);
-
PARI
is(n,f=factor(n))=if(#f[,2]<2 || vecmax(f[,2])>1, return(0)); for(i=1,#f~, if((n-10)%(f[i,1]+10), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017
Extensions
a(20)-a(27) from Donovan Johnson, Nov 15 2013
a(28) from Charles R Greathouse IV, Nov 05 2017