This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225723 #11 Dec 17 2021 18:57:34 %S A225723 1,2,3,12,9,17,108,72,68,142,1280,810,680,710,1569,18750,11520,9180, %T A225723 8520,9414,21576,326592,196875,152320,134190,131796,151032,355081, %U A225723 6588344,3919104,2975000,2544640,2372328,2416512,2840648,6805296 %N A225723 Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n. %C A225723 T(n,1) = n*(n-1)^(n-1) = A055897(n). %C A225723 Row sums = A190314. %C A225723 T(n,n) = A001865(n). %C A225723 Sum_{k=1..n} T(n,k)*k = n^(n+1). %H A225723 Alois P. Heinz, <a href="/A225723/b225723.txt">Rows n = 1..100, flattened</a> %F A225723 E.g.f.: log(1/(1 - A(x*y)))/(1 - A(x)) where A(x) is the e.g.f. for A000169. %F A225723 T(n,k) = C(n,k)*A001865(k)*A000312(n-k). - _Alois P. Heinz_, May 13 2013 %e A225723 Triangle T(n,k) begins: %e A225723 1; %e A225723 2, 3; %e A225723 12, 9, 17; %e A225723 108, 72, 68, 142; %e A225723 1280, 810, 680, 710, 1569; %e A225723 18750, 11520, 9180, 8520, 9414, 21576; %e A225723 326592, 196875, 152320, 134190, 131796, 151032, 355081; %e A225723 ... %p A225723 b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n): %p A225723 T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k): %p A225723 seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, May 13 2013 %t A225723 nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = %t A225723 Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; %t A225723 Map[Select[#, # > 0 &] &, %t A225723 Drop[Range[0, nn]! CoefficientList[ %t A225723 Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}], %t A225723 1]] // Grid %Y A225723 Cf. A225213. %K A225723 nonn,tabl %O A225723 1,2 %A A225723 _Geoffrey Critzer_, May 13 2013