This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225728 #24 Jul 04 2025 11:15:05 %S A225728 3,17,967 %N A225728 Primes p such that sum of primorials (A143293) not including p as a factor is divisible by p. %C A225728 As in A002110, primorial(0)=1, and primorial(n) = primorial(n-1)*prime(n). %C A225728 The next term, if it exists, is bigger than 10^8. %e A225728 Sum of primorials not including 3 as a factor is 1 + 2 = 3. Because it's divisible by 3, the latter is in the sequence. %e A225728 Sum of primorials not including 17 as a factor is 1 + 2 + 6 + 6*5 + 30*7 + 210*11 + 2310*13 = 32589. Because 32589 is divisible by 17, the latter is in the sequence. %o A225728 (Python) %o A225728 primes = [2,3] %o A225728 def addPrime(k): %o A225728 for p in primes: %o A225728 if k%p==0: return %o A225728 if p*p > k: break %o A225728 primes.append(k) %o A225728 for n in range(5,1000000,6): %o A225728 addPrime(n) %o A225728 addPrime(n+2) %o A225728 sum_ = 0 %o A225728 primorial = 1 %o A225728 for p in primes: %o A225728 sum_ += primorial %o A225728 primorial *= p %o A225728 if sum_ % p == 0: print(p, end=', ') %o A225728 (PARI) s=P=1;forprime(p=2,1e6,s+=P*=p;if(s%p==0,print1(p", "))) \\ _Charles R Greathouse IV_, Mar 19 2014 %o A225728 (PARI) is(p)=if(!isprime(p),return(0)); my(s=Mod(1,p),P=s); forprime(q=2,p-1,s+=P*=q); s==0 \\ _Charles R Greathouse IV_, Mar 19 2014 %o A225728 (Python) %o A225728 from itertools import chain, accumulate, count, islice %o A225728 from operator import mul %o A225728 from sympy import prime %o A225728 def A225728_gen(): return (prime(i+1) for i, m in enumerate(accumulate(accumulate(chain((1,),(prime(n) for n in count(1))), mul))) if m % prime(i+1) == 0) %o A225728 A225728_list = list(islice(A225728_gen(), 3)) # _Chai Wah Wu_, Feb 23 2022 %Y A225728 Cf. A002110, A143293, A225727. %K A225728 nonn,bref,hard,more %O A225728 1,1 %A A225728 _Alex Ratushnyak_, May 14 2013