cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225744 The number of isomorphism classes of connected, Generalized Alexander quandles of order n.

This page as a plain text file.
%I A225744 #16 Jan 31 2014 09:59:55
%S A225744 1,0,1,1,3,0,5,3,8,0,9,3,11,0,3,9,15,0,17,3,5,0,21,5,34,0,35,5,27,0,
%T A225744 29,17,9,0,15,18,35,0,11,9,39,0,41,9,24,0,45,21,76,0,15,11,51,0,27,19,
%U A225744 17,0,57,15,59,0,40,97,33,0,65,15,21,0,69,37,71,0,39,17,45,0,77,34,218,0,81,15,45,0,27,27,87,0,55,21,29,0,51,43,95,0,72,34
%N A225744 The number of isomorphism classes of connected, Generalized Alexander quandles of order n.
%C A225744 Given a group G and an automorphism f of G define the binary operation * on G by x*y = f(xy^(-1))y. Then (G,*) is a quandle. We call this a Generalized Alexander quandle. If G is abelian then (G,*) is an Alexander quandle (see A193024). (G,*) is connected if the group generated by the right translations of (G,*) is transitive on G.
%H A225744 J. Scott Carter, <a href="http://arxiv.org/abs/1002.4429">A Survey of Quandle Ideas</a>, arXiv:1002.4429 [math.GT]
%H A225744 W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307, 2013
%o A225744 (GAP)
%o A225744 IsConnected:=function(A)
%o A225744 local B,LL;
%o A225744 B:=TransposedMat(A);
%o A225744    LL:=List(B,x->PermList(x));
%o A225744    return IsTransitive(Group(LL),[1..Length(A)]);
%o A225744 end;;
%o A225744 MakeGAlex:=function(f,g)
%o A225744 local e,n,QM,i,j;
%o A225744   e:=Elements(g);
%o A225744   n:=Length(e);
%o A225744   QM:=List([1..n],t->[1..n]);
%o A225744     for i in [1..n] do
%o A225744       for j in [1..n] do
%o A225744        QM[i][j]:=Position(e,Image(f,e[i]*e[j]^(-1))*e[j]);
%o A225744       od;
%o A225744     od;
%o A225744   return QM;
%o A225744 end;;
%o A225744 a:=[];;
%o A225744 for n in [1..100] do
%o A225744 a[n]:=0;
%o A225744 N:=NrSmallGroups(n);
%o A225744 for u in [1..N] do
%o A225744    g:=SmallGroup(n,u);
%o A225744    ag:=AutomorphismGroup(g);;
%o A225744    eag:=List(ConjugacyClasses(ag),Representative);
%o A225744    for t in eag do
%o A225744       QM:=MakeGAlex(t,g);
%o A225744       if IsConnected(QM) then a[n]:=a[n]+1; fi;
%o A225744    od;
%o A225744   od;
%o A225744 od;;
%o A225744 a;
%Y A225744 Cf. A193067, A181771.
%Y A225744 See also Index to OEIS under quandles.
%K A225744 nonn
%O A225744 1,5
%A A225744 _W. Edwin Clark_, Aug 04 2013