cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225746 Decimal expansion of the logarithm of Glaisher's constant.

Original entry on oeis.org

0, 2, 4, 8, 7, 5, 4, 4, 7, 7, 0, 3, 3, 7, 8, 4, 2, 6, 2, 5, 4, 7, 2, 5, 2, 9, 9, 3, 5, 7, 6, 1, 1, 3, 9, 7, 6, 0, 9, 7, 3, 6, 9, 7, 1, 3, 6, 6, 8, 5, 3, 5, 1, 1, 6, 9, 9, 9, 8, 5, 5, 6, 3, 9, 6, 9, 0, 6, 9, 3, 0, 3, 2, 9, 9, 9, 9, 1, 0, 5, 0, 6, 0, 9, 2, 8, 5, 8, 4, 3, 3, 6, 6, 5, 8, 4, 2, 0, 8, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, May 14 2013

Keywords

Examples

			0.248754477033784262547252993576113976097369713668535116999855639690693032999...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Glaisher], 10, 100] // First
  • PARI
    1/12-zeta'(-1) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals 1/12 - zeta'(-1).
Also equals (gamma + log(2*Pi))/12 -zeta'(2)/(2*Pi^2).
From Amiram Eldar, Apr 15 2021: (Start)
Equals lim_{n->oo} (Sum_{k=1..n} k*log(k) - (n^2/2 + n/2 + 1/12)*log(n) + n^2/4).
Equals 1/8 + (1/2) * Sum_{n>=0} ((1/(n+1)) * Sum_{k=0..n} (-1)^(k+1) * binomial(n,k) * (k+1)^2 * log(k+1)) (Guillera and Sondow, 2008). (End)