cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225760 Counts of internal lattice points within more than one primitive Pythagorean triangle (PPT).

This page as a plain text file.
%I A225760 #34 Feb 16 2025 08:33:19
%S A225760 2287674594,983574906769,16155706018465,24267609913869,72461523834219,
%T A225760 367110963344658,473161567692022,8504240238563547,9271267603660839,
%U A225760 13796686490781630,28200194168137420,68964192934317607,121927568913483970,125247439852891719,280877330289234924,288885660249168850
%N A225760 Counts of internal lattice points within more than one primitive Pythagorean triangle (PPT).
%C A225760 A PPT can be drawn as a closed lattice polygon with the hypotenuse intersecting no lattice points other than at its start and end. Consequently the PPT is subject to Pick's theorem.
%H A225760 Frank A. Stevenson, <a href="/A225760/b225760.txt">Table of n, a(n) for n = 1..80</a>
%H A225760 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PicksTheorem.html">Pick's Theorem</a>
%H A225760 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pick%27s_theorem">Pick's theorem</a>
%F A225760 If integers a < b are the perpendicular sides of a PPT, then Pick's theorem gives the count of internal lattice points, I = (a-1)*(b-1)/2 and is comparable to the area, A = a*b/2.
%e A225760 a(1) = 2287674594 as it is the first count of internal lattice points within more than one PPT. It has (a, b) = (18108, 252685) and (28077, 162964).
%t A225760 getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getlist[j_] := (newlist=getpairs[j]; Table[(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1) (2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, {m, 1, Length[newlist]}]); maxterms=4000; table=Sort[Flatten[Table[getlist[2p+1], {p, 1, 2maxterms}]]]; n=1; table1={}; While[n<Length[table], (If[table[[n+1]]==table[[n]], table1=Append[table1, table[[n]]]]; n++)]; table1
%o A225760 (PARI) is(n)=my(b,s,N=2*n);fordiv(n>>valuation(n,2),a,if(gcd(b=N/a+1, a+1)==1 && issquare(b^2+(a+1)^2) && s++>1, return(1)));0 \\ _Charles R Greathouse IV_, May 15 2013
%Y A225760 Cf. A024407, A225414.
%K A225760 nonn,hard
%O A225760 1,1
%A A225760 _Frank M Jackson_, May 15 2013
%E A225760 a(8) and beyond from _Frank A. Stevenson_, Nov 29 2023