cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225779 Largest coefficient of (1 + x + ... + x^11)^n.

This page as a plain text file.
%I A225779 #41 Mar 19 2025 08:08:08
%S A225779 1,1,12,108,1156,12435,137292,1528688,17232084,195170310,2228154512,
%T A225779 25506741084,293661065788,3386455204288,39222848622984,
%U A225779 454745042732160,5290621952635476,61590267941514516,719050614048219912,8397773337294253140,98314091309732350656
%N A225779 Largest coefficient of (1 + x + ... + x^11)^n.
%C A225779 Generally, largest coefficient of (1 + x + ... + x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)).
%H A225779 Robert Israel, <a href="/A225779/b225779.txt">Table of n, a(n) for n = 0..927</a>
%H A225779 <a href="/index/Ce#cfn">Index entries for sequences of k-nomial coefficients</a>
%F A225779 a(n) ~ 12^n * sqrt(6/(143*Pi*n)).
%p A225779 P:= add(x^i,i=0..11):
%p A225779 seq(coeff(P^n,x,floor(11*n/2)),n=0..50); # _Robert Israel_, Jan 30 2017
%t A225779 Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j,0,11}]^n], x^Floor[11*n/2]], {n,1,20}]}]
%t A225779 f[n_] := Max[CoefficientList[Sum[x^k, {k, 0, 11}]^n, x]]; Array[f, 20, 0] (* _Robert G. Wilson v_, Jan 29 2017 *)
%o A225779 (PARI) a(n) = vecmax(Vec(Pol(vector(12,k,1))^n)); \\ _Michel Marcus_, Jan 29 2017
%Y A225779 Row 12 of A077042.
%K A225779 nonn
%O A225779 0,3
%A A225779 _Vaclav Kotesovec_, Aug 09 2013