This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225785 #37 Sep 24 2023 13:04:15 %S A225785 0,12,84,3960,27144,1275204,8740380,410611824,2814375312,132215732220, %T A225785 906220110180,42573055163112,291800061102744,13708391546789940, %U A225785 93958713454973484,4414059505011197664,30254413932440359200,1421313452222058857964 %N A225785 Numbers n such that triangular(n) + triangular(2*n) is a triangular number. %C A225785 Equivalently, numbers n such that oblong(n) + oblong(2*n) is an oblong number, where oblong(n) = A002378(n) = n*(n+1). %C A225785 Also, x values in the equation A147875(x) = A000217(y) - see _Ralf Stephan_ in Program lines. - _Bruno Berselli_, May 18 2013 %C A225785 Also, numbers m such that 2*m+1 and 10*m+1 are both squares. - _Bruno Berselli_, Mar 03 2016 %H A225785 Harvey P. Dale, <a href="/A225785/b225785.txt">Table of n, a(n) for n = 1..798</a> %H A225785 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,322,-322,-1,1). %F A225785 G.f.: 12*x*(1+6*x+x^2)/((1-x)*(1-18*x+x^2)(1+18*x+x^2)). [_Bruno Berselli_, May 18 2013] %F A225785 a(n) = (1/20)*((3+(-1)^n*sqrt(5))*(2-sqrt(5))^(4*floor(n/2))+(3-(-1)^n*sqrt(5))*(2+sqrt(5))^(4*floor(n/2))-6). [_Bruno Berselli_, May 18 2013] %F A225785 a(2*n) = (Fibonacci(6*n-3)^2 + Lucas(6*n-3)*Fibonacci(6*n-1))/2. - _Greg Dresden_, Sep 24 2023 %e A225785 12*13/2 + 24*25/2 = 27*28/2, so 12 is in the sequence. %t A225785 CoefficientList[Series[12 x (1 + 6 x + x^2)/((1 - x) (1 - 18 x + x^2) (1 + 18 x + x^2)), {x, 0, 20}], x] (* _Bruno Berselli_, May 18 2013 *) %t A225785 LinearRecurrence[{1,322,-322,-1,1},{0,12,84,3960,27144},20] (* _Harvey P. Dale_, Apr 08 2021 *) %o A225785 (C) %o A225785 #include <stdio.h> %o A225785 #include <math.h> %o A225785 int main() { %o A225785 unsigned long long i, s, t; %o A225785 for (i = 0; i< (1ULL<<31); i++) { %o A225785 s = 2*i*(2*i+1) + i*(i+1); %o A225785 t = sqrt(s); %o A225785 if (s==t*(t+1)) printf("%llu, ", i); %o A225785 } %o A225785 return 0; %o A225785 } %o A225785 (PARI) for(n=1,10^9,t=n*(5*n+3)/2;x=sqrtint(2*t);if(t==x*(x+1)/2,print(n))) /* _Ralf Stephan_, May 17 2013 */ %Y A225785 Cf. A000217, A002378, A082183. %Y A225785 Cf. A224419 (numbers n such that triangular(n) + triangular(2*n) is a square). %Y A225785 Cf. A011916 (numbers n such that triangular(2*n) - triangular(n) is a triangular number). %Y A225785 Cf. A225786 (numbers n such that oblong(2*n) + oblong(n) is a square). %Y A225785 Cf. A225839 (triangular numbers of the form triangular(x) + triangular(2*x)). %K A225785 nonn,easy %O A225785 1,2 %A A225785 _Alex Ratushnyak_, May 16 2013 %E A225785 More terms from _Bruno Berselli_, May 18 2013