cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225814 Nonsquarefree integers m such that, for prime p, if p^k|m then 2+p^k|2+m.

This page as a plain text file.
%I A225814 #15 Aug 09 2015 14:53:48
%S A225814 44770,825550,27354103,123572293,140307550,148925950,213663175,
%T A225814 375064963,1002265990,1579248097,2953883023,3985833850,4716952513,
%U A225814 4871428198,4929024175,9067177798
%N A225814 Nonsquarefree integers m such that, for prime p, if p^k|m then 2+p^k|2+m.
%C A225814 Squarefree integers m such that p|m implies 2+p|2+m are in A029562.
%C A225814 No element in the sequence is divisible by 4.
%H A225814 Giovanni Resta, <a href="/A225814/b225814.txt">Table of n, a(n) for n = 1..50</a>
%e A225814 44770 = 2*5*37*11^2 is in the list because 44772 is divisible by 4, 7, 39, 13  and 123.
%e A225814 27354103 = 151*3697*7^2 is in the list because 27354105 is divisible by 153, 3699, 9 and 51.
%t A225814 PPDivs[m_Integer]:=Module[{f=FactorInteger[m]}, Flatten[Table[First[f[[i]]]^Range[Last[f[[i]]]], {i, 1, Length[f]}]]]; Select[Select[ Range[1000000], !SquareFreeQ[#]&], Union[ Mod[#+2, 2+PPDivs[#] ] ]== {0} &]
%K A225814 nonn
%O A225814 1,1
%A A225814 _Emmanuel Vantieghem_, Jul 29 2013