This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225825 #24 Apr 09 2023 07:54:21 %S A225825 1,1,-1,-1,7,3,-31,-17,127,155,-2555,-2073,1414477,38227,-57337, %T A225825 -929569,118518239,28820619,-5749691557,-1109652905,91546277357, %U A225825 51943281731,-1792042792463,-2905151042481,1982765468311237,191329672483963,-286994504449393,-14655626154768697,3187598676787461083,1291885088448017715,-4625594554880206790555 %N A225825 a(2n)=A001896(n). a(2n+1)=(-1)^n*A110501(n+1). %C A225825 a(n) is the numerators of numbers derived from Bernoulli and Genocchi numbers. The denominators b(n) are the Clausen numbers A141056. %C A225825 The numbers are %C A225825 BERGEN(n) = 1, 1/2, -1/6, -1/2, 7/30, 3/2, -31/42, -17/2, 127/30, 155/2,.. %C A225825 Difference table: %C A225825 1, 1/2, -1/6, -1/2, 7/30, 3/2, -31/42,... %C A225825 -1/2, -2/3, -1/3, 11/15, 19/15, -47/21, -163/21,... %C A225825 -1/6, 1/3, 16/15, 8/15, -368/105, -116/21, 2152/105,... %C A225825 1/2, 11/15, -8/15, -424/105, -212/105, 2732/105, 4204/105,... %C A225825 7/30, -19/15, -368/195, 212/105, 2944/105, 1472/105,... %C A225825 -3/2, -47/21, 116/21, 2732/105, -1472/105, -70240/231, -35120/231,... . %C A225825 a(n) is an autosequence. Its inverse binomial transform is the sequence signed. Its main diagonal is the double of the first upper diagonal. %C A225825 a(n) is divisible by A051716(n+1). %C A225825 Denominators of the main diagonal: A181131(n). Checked by Jean-François Alcover for the first 25 terms. %C A225825 The numerators of the main diagonal: %C A225825 1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272,... %C A225825 (thanks to Jean-François Alcover) are divisible by 2^n. %F A225825 c(n)=(0 followed by -A036968(n+1)) = 0, 1, 0, -1, 0, 3,... . %F A225825 a(n) = A157779(n) + c(n). %p A225825 A225825 := proc(n) %p A225825 local nhalf ; %p A225825 nhalf := floor(n/2) ; %p A225825 if type(n,'even') then %p A225825 A001896(nhalf) ; %p A225825 else %p A225825 (-1)^nhalf*A110501(nhalf+1) ; %p A225825 end if; %p A225825 end proc; # _R. J. Mathar_, Oct 28 2013 %t A225825 a[0] = 1; a[n_] := Numerator[BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Aug 01 2013 *) %Y A225825 Cf. A083420. %K A225825 sign %O A225825 0,5 %A A225825 _Paul Curtz_, Jul 30 2013 %E A225825 More terms from _Jean-François Alcover_, Aug 01 2013 %E A225825 Definition corrected by _R. J. Mathar_, Oct 28 2013