This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225835 #19 Jul 10 2019 21:24:07 %S A225835 3,26839,11,239,379 %N A225835 Smallest prime p such that there is a prime q satisfying (2*n + 1)*p^2 - (2*n-1)*q^2 = 2, or 0 if no such p exists. %C A225835 Smallest prime p such that there is a prime q satisfying n*p^2 - (n-1)*q^2 = 1, or 0 if no such p exists: 5, 89,... %C A225835 Primes p such that there is a prime q satisfying 5*p^2 - 3*q^2 = 2: 26839, 6391493137, 2540081 3820758542 5442608775 1898667220 6441480372 8945619713, ... %C A225835 Primes q such that there is a prime p satisfying 5*p^2 - 3*q^2 = 2: 34649, 8251382159, 32792309 6359710073 4829167292 2880944251 7973351812 0308284159, ... %C A225835 a(8) = 22656451 0158169057 8396614544 8202266647 1482614443 0220423848 3659973753 8209021958 1071702657 4442008471 0041419367 4411846431 - _Giovanni Resta_, May 16 2013 %C A225835 Conjecture: a(6) = a(7) = 0. _Charles R Greathouse IV_ reports that a(6) must have thousands of digits. - _Michael B. Porter_, May 19 2013 %H A225835 Eric Weisstein's World of Mathematics, <a href="http://www.mathworld.wolfram.com/PellEquation.html">Pell Equation</a> %e A225835 (2*2+1)*26839^2 - (2*2-1)*34649^2 = 3601659605 - 3601659603 = 2 and 26839, 34649 are primes, so a(2) = 26839. %Y A225835 Cf. A033313, A225431. %K A225835 nonn %O A225835 1,1 %A A225835 _Irina Gerasimova_, May 16 2013 %E A225835 a(2) from _Giovanni Resta_, May 15 2013