This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225844 #20 Nov 13 2024 15:12:08 %S A225844 2,1,3,5,7,2,11,13,5,17,19,3,6,25,27,9,31,33,35,4,9,41,8,45,47,10,14, %T A225844 53,9,5,59,61,21,18,67,69,21,73,75,14,22,6,11,13,87,15,91,26,20,34,12, %U A225844 101,26,105,30,7,20,33,115,117,119,34,21,125,37,129,29,133,14,137 %N A225844 Least k>0 such that triangular(n) + k*(k+1) is a triangular number. %C A225844 For n>0, a(n) <= 2*n-1, because n*(n+1)/2 + (2*n-1)*2*n = (9*n^2 - 3*n)/2 = 3*n*(3*n-1)/2 = triangular(3*n-1). %C A225844 The subsequence with terms less than 2*n-1 begins: 2, 5, 3, 6, 9, 4, 9, 8, 10, 14, 9, 5, 21, 18, 21, 14, 22, 6, 11, 13, 15, ... %C A225844 The sequence of n's such that a(n) < 2*n-1 begins: 5, 8, 11, 12, 15, 19, 20, 22, 25, 26, ... %H A225844 Alois P. Heinz, <a href="/A225844/b225844.txt">Table of n, a(n) for n = 0..10000</a> %p A225844 a:= proc(n) option remember; local w, k; w:= n*(n+1)/2; %p A225844 for k while not issqr(8*(w+k*(k+1))+1) do od; k %p A225844 end: %p A225844 seq(a(n), n=0..69); # _Alois P. Heinz_, Nov 13 2024 %t A225844 lktrno[n_]:=Module[{t=(n(n+1))/2,k=1},While[!IntegerQ[(Sqrt[ 8(t+k(k+1))+1]-1)/2],k++];k]; Array[lktrno,70,0] (* _Harvey P. Dale_, Aug 19 2014 *) %o A225844 (Python) %o A225844 def isTriangular(a): %o A225844 sr = 1 << (a.bit_length() >> 1) %o A225844 a += a %o A225844 while a < sr*(sr+1): sr>>=1 %o A225844 b = sr>>1 %o A225844 while b: %o A225844 s = sr+b %o A225844 if a >= s*(s+1): sr = s %o A225844 b>>=1 %o A225844 return (a==sr*(sr+1)) %o A225844 n = tn = 0 %o A225844 while 1: %o A225844 for m in range(1, 1000000000): %o A225844 if isTriangular(tn + m*(m+1)): break %o A225844 print(m, end=', ') %o A225844 n += 1 %o A225844 tn += n %o A225844 (PARI) a(n)=for(k=1,2*n,t=n*(n+1)/2+k*(k+1);x=sqrtint(2*t);if(t==x*(x+1)/2,return(k))) /* from _Ralf Stephan_ */ %Y A225844 Cf. A000217, A002378, A082183, A088572. %Y A225844 Cf. A101157 (least k>0 such that triangular(n) + k^2 is a triangular number). %K A225844 nonn %O A225844 0,1 %A A225844 _Alex Ratushnyak_, May 17 2013