cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225847 Decimal expansion of Sum_{n>=1} 1/(n*binomial(4*n,n)).

Original entry on oeis.org

2, 6, 9, 5, 2, 3, 9, 2, 9, 0, 2, 7, 7, 4, 2, 0, 1, 7, 3, 1, 7, 1, 8, 1, 6, 4, 7, 4, 8, 6, 3, 2, 9, 3, 0, 2, 8, 4, 0, 8, 4, 9, 8, 2, 5, 3, 4, 3, 2, 6, 6, 3, 0, 9, 8, 1, 5, 8, 4, 3, 7, 7, 2, 9, 1, 8, 6, 2, 8, 3, 6, 9, 8, 2, 7, 6, 4, 0, 8, 2, 5, 3, 2, 7, 3, 3, 1, 2, 6, 1, 8, 5, 8, 3, 0, 0, 4, 8, 4, 4, 0, 6, 0, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

Examples

			0.269523929027742017317181647486329302840849825343266309815843772918628369827...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.

Crossrefs

Programs

  • Mathematica
    (1/4)*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, 27/256] // RealDigits[#, 10, 105]& // First

Formula

Equals Integral_{x>0} ((3*x)/((1 + x)*(1 + 3*x + 6*x^2 + 4*x^3 + x^4))) dx.
Equals (3*c/(2*c^2+1)) * log((c-1)/(c+1)) + (3*(c-1)/(2*(2*c^2+1))) * sqrt(c/(c+2)) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1)) + (3*(c+1)/(2*(2*c^2+1))) * sqrt(c/(c-2)) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1)), where c = sqrt(1 + (16/sqrt(3)) * cos(arctan(sqrt(229/27))/3)) (Batir and Sofo, 2013). - Amiram Eldar, Dec 07 2024