A225885 Square numbers that remain square when their most-significant (or leftmost) digit is removed.
1, 4, 9, 49, 64, 81, 100, 225, 400, 625, 900, 1225, 2025, 3025, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 15625, 22500, 27225, 30625, 34225, 40000, 42025, 50625, 60025, 62500, 70225, 75625, 81225, 90000, 93025, 105625, 122500, 202500, 275625, 302500, 330625
Offset: 1
Examples
225 = 15^2 becomes 25 = 5^2, 105625 = 325^2 becomes 5625 = 75^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3000 (n = 4..403 from Christian N. K. Anderson and Kevin L. Schwartz)
Programs
-
Mathematica
b^2 /. Flatten[Outer[Solve[a^2 + #2*10^#1 == b^2 && 0 <= a < Sqrt[10^#1] && Sqrt[#2*10^#1] <= b < Sqrt[10^(#1 + 1)], {a, b}, Integers] &, Range[0, 5], Range[9]], 2] (* Davin Park, Dec 30 2016 *)
-
PARI
is_A225885(n)=issquare(n%10^(#Str(n)-1))&&issquare(n)&&n>9 \\ M. F. Hasler, Nov 01 2014
-
R
no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}; issquare<-function(x) ifelse(as.bigz(x)<2,T,all(table(as.numeric(gmp::factorize(x)))%%2==0)); which(sapply(1:200,function(x) issquare(no0(substr(x^2,2,ndig(x^2)))))>0)^2
Extensions
1,4,9 added (per M. F. Hasler's comment) by Chai Wah Wu, Nov 03 2014
Comments