cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225910 Square array read by antidiagonals: a(m,n) is the number of binary pattern classes in the (m,n)-rectangular grid, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

This page as a plain text file.
%I A225910 #30 May 15 2025 22:11:37
%S A225910 1,1,1,1,2,1,1,3,3,1,1,6,7,6,1,1,10,24,24,10,1,1,20,76,168,76,20,1,1,
%T A225910 36,288,1120,1120,288,36,1,1,72,1072,8640,16576,8640,1072,72,1,1,136,
%U A225910 4224,66816,263680,263680,66816,4224,136,1,1,272,16576,529920,4197376,8407040,4197376,529920,16576,272,1
%N A225910 Square array read by antidiagonals: a(m,n) is the number of binary pattern classes in the (m,n)-rectangular grid, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
%C A225910 In the square table A000012, A005418, and A225826 to A225834 are the first 11 rows (see example).
%C A225910 In the square table, m odd (see formula). The order of the recurrence equations is 4. Let it be (a1(m),a2(m),a3(m),a4(m)) the characterizing 4-plet of a(m). The sequence a1(m) belongs to A028403 (2^m+2^((m+1)/2)), -a2(m) to A147538 (2^m*(2^((m+1)/2)-1)) and a4(m) to A013824 (2^(2m)*2^((m+1)/2)). -a3(m) sequence formula is 2^m*(2^m+2^((m+1)/2)).
%C A225910 All the coefficients of x in generating functions from A225826 to A225834 belong to A113979.
%H A225910 Alois P. Heinz, <a href="/A225910/b225910.txt">Antidiagonals n = 0..65, flattened</a>
%H A225910 Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv:2311.13072 [math.CO], 2023.
%F A225910 m even and n even:
%F A225910 a(m,n) = 2^(m*n/2-2)*(2^(m*n/2) + 3);
%F A225910 m even and n odd:
%F A225910 a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(m/2-1) + 1);
%F A225910 m odd and n even:
%F A225910 a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(n/2-1) + 1);
%F A225910 m odd and n odd:
%F A225910 a(m,n) = 2^((m*n-1)/2-1)*(2^((m*n-1)/2) + 2^((m-1)/2) + 2^((n-1)/2) + 1).
%F A225910 m even:
%F A225910 a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
%F A225910 m odd:
%F A225910 a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) - 2^(((m+1)/2)*n-3)*(2^((m-1)/2)-1) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
%F A225910 Only a(1,n) and a(2,n) (A005418 and A225826) sequences are needed to define the others.
%e A225910 Array begins:
%e A225910   1   1      1         1            1               1                  1 ...
%e A225910   1   2      3         6           10              20                 36 ...
%e A225910   1   3      7        24           76             288               1072 ...
%e A225910   1   6     24       168         1120            8640              66816 ...
%e A225910   1  10     76      1120        16576          263680            4197376 ...
%e A225910   1  20    288      8640       263680         8407040          268517376 ...
%e A225910   1  36   1072     66816      4197376       268517376        17180065792 ...
%e A225910   1  72   4224    529920     67133440      8590786560      1099516870656 ...
%e A225910   1 136  16576   4212736   1073790976    274882625536     70368756760576 ...
%e A225910   1 272  66048  33632256  17180262400   8796137062400   4503599962914816 ...
%e A225910   1 528 262912 268713984 274878693376 281475261923328 288230376957018112 ...
%e A225910   ...
%Y A225910 Cf. A005418, A225826-A225834.
%K A225910 nonn,easy,tabl
%O A225910 0,5
%A A225910 _Yosu Yurramendi_, May 20 2013