This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225929 #8 May 22 2013 20:30:36 %S A225929 16,23,32,44,72,88,107,152,204,296,332,408,584,684,791,908,1032,1096, %T A225929 1452,1772,1944,2312,2508,2924,3608,3852,4232,4632,5192,5484,6408, %U A225929 6731,7064,8108,9612,10412,10824,11672,12108,13004,14892,15884,16392,16648,17432 %N A225929 Number of conjugacy classes in Chevalley group G_2(q) as q runs through the prime powers. %H A225929 Eric M. Schmidt, <a href="/A225929/b225929.txt">Table of n, a(n) for n = 1..1000</a> %H A225929 Frank Luebeck, <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/nrclasses/nrclasses.html">Numbers of Conjugacy Classes in Finite Groups of Lie Type</a>. %F A225929 Let q be the n-th prime power. Then a(n) = q^2 + 2q + c, where c = 9 if q == 1, 5 (mod 6) and c = 8 otherwise. %o A225929 (Sage) def A225929(q) : return q^2 + 2*q + (9 if q%6 in [1,5] else 8) %Y A225929 Cf. A188161, A224790, A225928 - A225938. %K A225929 nonn %O A225929 1,1 %A A225929 _Eric M. Schmidt_, May 21 2013