A225931 Number of conjugacy classes in Chevalley group F_4(q) as q runs through the prime powers.
95, 273, 539, 1156, 3566, 5603, 8751, 18346, 34364, 75443, 95656, 146882, 308254, 426656, 576345, 762412, 990326, 1120595, 1985636, 2976016, 3591434, 5103526, 6017672, 8208724, 12553402, 14326796, 17326739, 20785106, 26163886, 29214704, 39981062, 44156775
Offset: 1
Keywords
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Frank Luebeck, Numbers of Conjugacy Classes in Finite Groups of Lie Type.
Programs
-
Sage
def A225931(q) : return q^4 + 2*q^3 + (6*q^2 + 10*q + 19 if q%2==0 else 7*q^2 + 15*q + 30 if q%3==0 else 7*q^2 + 15*q + 31)
Formula
Let q be the n-th prime power.
a(n) = q^4 + 2q^3 + 6q^2 + 10q + 19 if q == 0 mod 2.
a(n) = q^4 + 2q^3 + 7q^2 + 15q + 30 if q == 0 mod 3.
a(n) = q^4 + 2q^3 + 7q^2 + 15q + 31 otherwise.