This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225932 #6 May 22 2013 20:32:44 %S A225932 180,1269,6116,20454,140886,304548,605685,1965462,5262486,17969012, %T A225932 25736406,49802214,155060070,254728710,402876885,616803846,918054582, %U A225932 1109465220,2638941366,4871761782,6475396806,11018543046,14135564454,22598655270,42920128086 %N A225932 Number of conjugacy classes in simply connected Chevalley group E_6(q) as q runs through the prime powers. %H A225932 Eric M. Schmidt, <a href="/A225932/b225932.txt">Table of n, a(n) for n = 1..1000</a> %H A225932 Frank Luebeck, <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/nrclasses/nrclasses.html">Numbers of Conjugacy Classes in Finite Groups of Lie Type</a>. %F A225932 Let q be the n-th prime power. %F A225932 a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 15q^2 + 21q + 60 if q == 1 (mod 6). %F A225932 a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 6q^2 + 4q + 4 if q == 2 (mod 6). %F A225932 a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 3 if q == 3 (mod 6). %F A225932 a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 14q^2 + 20q + 52 if q == 4 (mod 6). %F A225932 a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 4 if q == 5 (mod 6). %o A225932 (Sage) def A225932(q) : return q^6 + q^5 + 2*q^4 + 2*q^3 + [15*q^2 + 21*q + 60, 6*q^2 + 4*q + 4, 7*q^2 + 5*q + 3, 14*q^2 + 20*q + 52, 7*q^2 + 5*q + 4][q%6-1] %Y A225932 Cf. A188161, A224790, A225928 - A225938. %K A225932 nonn %O A225932 1,1 %A A225932 _Eric M. Schmidt_, May 21 2013