cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225938 Number of conjugacy classes in Chevalley group E_8(q) as q runs through the prime powers (A246655).

Original entry on oeis.org

1156, 12825, 97154, 519071, 6906102, 19543486, 49150839, 238045722, 889575240, 4600759094, 7439557452, 17980383618, 82034207430, 159213167411, 293713437009, 518754968088, 882274298862, 1136129443366, 3612770425152, 8189556710532, 11973138177210, 24340206797502
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Maple
    A225938 := proc(n)
        local q ;
        q := A246655(n) ;
        if modp(q,2) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 +  9*q^4 + 14*q^3 + 32*q^2 + 47*q +  70;
        elif modp(q,3) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 39*q^2 + 65*q + 102 ;
        elif modp(q,5) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 111 ;
        else
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 112 ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    qmax = 100;
    Reap[For[q = 2, q < qmax, q++, If[PrimePowerQ[q], cc = q^8 + q^7 + 2 q^6 + 3 q^5 + Which[Mod[q, 2] == 0, 9 q^4 + 14 q^3 + 32 q^2 + 47 q + 70, Mod[q, 3] == 0, 10 q^4 + 16 q^3 + 39 q^2 + 65 q + 102, Mod[q, 5] == 0, 10 q^4 + 16 q^3 + 40 q^2 + 67 q + 111, True, 10 q^4 + 16 q^3 + 40 q^2 + 67 q + 112]; Sow[cc]]]][[2, 1]] (* Jean-François Alcover, Mar 24 2020 *)
  • Sage
    def A225938(q) : return q^8 + q^7 + 2*q^6 + 3*q^5 + (9*q^4 + 14*q^3 + 32*q^2 + 47*q + 70 if q%2==0 else 10*q^4 + 16*q^3 + 39*q^2 + 65*q + 102 if q%3==0 else 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 111 if q%5==0 else 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 112)

Formula

Let q be the n-th prime power. Then a(n) is
q^8 + q^7 + 2q^6 + 3q^5 + 9q^4 + 14q^3 + 32q^2 + 47q + 70, q==0(mod 2);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 39q^2 + 65q + 102, q==0(mod 3);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 40q^2 + 67q + 111, q==0(mod 5);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 40q^2 + 67q + 112, otherwise.