This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225944 #20 Sep 30 2024 14:11:51 %S A225944 1,2,5,124,181,696,261800,3834909,18836480,51432542,69709961, %T A225944 332054520,3140421767 %N A225944 Numbers k such that prime(k) divides k^k - 1. %C A225944 a(14) > 10^12. - _Giovanni Resta_, May 11 2020 %t A225944 Select[Range[10^6], PowerMod[#, #, Prime@#] == 1 &] (* _Giovanni Resta_, May 23 2013 *) %o A225944 (Python) %o A225944 primes = [] %o A225944 n = 0 %o A225944 def addPrime(k): %o A225944 global n %o A225944 for p in primes: %o A225944 if k%p==0: return %o A225944 if p*p > k: break %o A225944 primes.append(k) %o A225944 n += 1 %o A225944 if (n**n-1) % k == 0: print(n, end=", ") %o A225944 addPrime(2) %o A225944 addPrime(3) %o A225944 for i in range(5, 10000000, 6): %o A225944 addPrime(i) %o A225944 addPrime(i+2) %o A225944 (Python) %o A225944 from sympy import nextprime, prime %o A225944 from itertools import count, islice %o A225944 def agen(startn=1): # generator of terms %o A225944 pn = prime(startn) %o A225944 for n in count(startn): %o A225944 if pow(n, n, pn) == 1: %o A225944 yield n %o A225944 pn = nextprime(pn) %o A225944 print(list(islice(agen(), 7))) # _Michael S. Branicky_, May 25 2023 %Y A225944 Cf. A000040, A000312, A048861, A225945. %K A225944 nonn,more %O A225944 1,2 %A A225944 _Alex Ratushnyak_, May 21 2013 %E A225944 a(8)-a(13) from _Giovanni Resta_, May 23 2013