cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225946 Nonsquare k such that the minimal (in y) solution 0 < y < x of x^2 - k*y^2 = 1 has x-y square.

Original entry on oeis.org

2, 3, 17, 24, 30, 40, 44, 84, 87, 99, 130, 182, 260, 288, 442, 448, 635, 650, 672, 675, 888, 894, 1211, 1299, 1368, 1605, 1616, 1722, 1748, 1955, 2034, 2499, 2541, 3150, 3287, 3782, 4224, 4400, 4920, 5073, 5619, 6723, 7242, 7310, 8487, 9228, 10200, 11055
Offset: 1

Views

Author

Irina Gerasimova, May 21 2013

Keywords

Comments

Numbers n such that A002350(n) - A002349(n) is a nonzero square. - Charles R Greathouse IV, Jun 06 2013

Examples

			3^2 - 2*2^2 = 1 and 3 - 2 = 1 (square), so a(1) = 2;
2^2 - 3*1^2 = 1 and 2 - 1 = 1 (square), so a(2) = 3;
33^2 - 17*8^2 = 25 and 33 - 8 = 25 (square), so a(3) = 17.
		

Crossrefs

Programs

  • Mathematica
    qQ[n_] := IntegerQ@Sqrt@n; Select[Range[500], ! qQ[#] && qQ[(x - y) /. ToRules[Expand[ Reduce[x^2 - #*y^2 == 1 && x>0 && y>0, {x,y}, Integers] /. C[1] -> 1]]] &] (* Giovanni Resta, May 25 2013 *)
  • PARI
    is(n)=if(issquare(n),return(0));my(cf=contfrac(sqrt(n)),t,N,D);for(i=1,#cf-1,t=cf[i+1];forstep(j=i,1,-1,t=cf[j]+1/t);N=numerator(t);D=denominator(t);if(N^2-n*D^2==1,return(issquare(N-D)))); warning("Insufficient precision for "n) \\ Charles R Greathouse IV, Jun 06 2013

Extensions

a(15)-a(47) from Giovanni Resta, May 25 2013