A225950 Triangle for odd legs of primitive Pythagorean triangles.
3, 0, 5, 15, 0, 7, 0, 21, 0, 9, 35, 0, 0, 0, 11, 0, 45, 0, 33, 0, 13, 63, 0, 55, 0, 39, 0, 15, 0, 77, 0, 65, 0, 0, 0, 17, 99, 0, 91, 0, 0, 0, 51, 0, 19, 0, 117, 0, 105, 0, 85, 0, 57, 0, 21, 143, 0, 0, 0, 119, 0, 95, 0, 0, 0, 23, 0, 165, 0, 153, 0, 133, 0, 105, 0, 69, 0, 25, 195, 0, 187, 0, 171, 0, 0, 0, 115, 0, 75, 0, 27, 0, 221, 0, 209, 0, 0, 0, 161, 0, 0, 0, 0, 0, 29
Offset: 2
Examples
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... 2: 3 3: 0 5 4: 15 0 7 5: 0 21 0 9 6: 35 0 0 0 11 7: 0 45 0 33 0 13 8: 63 0 55 0 39 0 15 9: 0 77 0 65 0 0 0 17 10: 99 0 91 0 0 0 51 0 19 11: 0 117 0 105 0 85 0 57 0 21 12: 143 0 0 0 119 0 95 0 0 0 23 13: 0 165 0 153 0 133 0 105 0 69 0 25 ... a(6,1) = 35 from the primitive triangle (35,12,37). a(6,2) = 0 because n and m are even (not allowed n, m values for primitive triangles). a(6,3) = 0 because gcd(6,3) = 3 (not 1, hence not allowed).
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Links
Crossrefs
Formula
a(n,m) = n^2 - m^2 if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^{n+m} = -1), otherwise a(n,m) = 0.
Comments