A225951 Triangle for perimeters of primitive Pythagorean triangles.
12, 0, 30, 40, 0, 56, 0, 70, 0, 90, 84, 0, 0, 0, 132, 0, 126, 0, 154, 0, 182, 144, 0, 176, 0, 208, 0, 240, 0, 198, 0, 234, 0, 0, 0, 306, 220, 0, 260, 0, 0, 0, 340, 0, 380, 0, 286, 0, 330, 0, 374, 0, 418, 0, 462, 312, 0, 0, 0, 408, 0, 456, 0, 0, 0, 552, 0, 390, 0, 442, 0, 494, 0, 546, 0, 598, 0, 650, 420, 0, 476, 0, 532, 0, 0, 0, 644, 0, 700, 0, 756
Offset: 2
Examples
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 2: 12 3: 0 30 4: 40 0 56 5: 0 70 0 90 6: 84 0 0 0 132 7: 0 126 0 154 0 182 8: 144 0 176 0 208 0 240 9: 0 198 0 234 0 0 0 306 10: 220 0 260 0 0 0 340 0 380 11: 0 286 0 330 0 374 0 418 0 462 12: 312 0 0 0 408 0 456 0 0 0 552 ... The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5), therefore, a(2,1) = 3 + 4 + 5 = 12. The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65), therefore, a(7,4) = 33 + 56 + 65 = 154.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Crossrefs
Formula
a(n,m) = 2*n*(n+m) if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^{n+m} = -1), otherwise a(n,m) = 0.
Comments