A225952 Triangle read by rows, giving the even legs of primitive Pythagorean triangles, with zero entries for non-primitive triangles.
4, 0, 12, 8, 0, 24, 0, 20, 0, 40, 12, 0, 0, 0, 60, 0, 28, 0, 56, 0, 84, 16, 0, 48, 0, 80, 0, 112, 0, 36, 0, 72, 0, 0, 0, 144, 20, 0, 60, 0, 0, 0, 140, 0, 180, 0, 44, 0, 88, 0, 132, 0, 176, 0, 220, 24, 0, 0, 0, 120, 0, 168, 0, 0, 0, 264, 0, 52, 0, 104, 0, 156, 0, 208, 0, 260, 0, 312, 28, 0, 84, 0, 140, 0, 0, 0, 252, 0, 308, 0, 364
Offset: 2
Examples
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 ... 2: 4 3: 0 12 4: 8 0 24 5: 0 20 0 40 6: 12 0 0 0 60 7: 0 28 0 56 0 84 8: 16 0 48 0 80 0 112 9: 0 36 0 72 0 0 0 144 10: 20 0 60 0 0 0 140 0 180 11: 0 44 0 88 0 132 0 176 0 220 12: 24 0 0 0 120 0 168 0 0 0 264 ...
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Links
Crossrefs
Formula
a(n,m) = 2*n*m if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^{n+m} = -1), otherwise a(n,m) = 0.
Extensions
Edited. Refs. added. - Wolfdieter Lang, Jul 26 2014
Comments