cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225976 Number of n X 2 binary arrays whose sum with another n X 2 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

4, 15, 48, 138, 350, 790, 1616, 3049, 5384, 9001, 14376, 22092, 32850, 47480, 66952, 92387, 125068, 166451, 218176, 282078, 360198, 454794, 568352, 703597, 863504, 1051309, 1270520, 1524928, 1818618, 2155980, 2541720, 2980871, 3478804, 4041239
Offset: 1

Views

Author

R. H. Hardin, May 22 2013

Keywords

Examples

			Some solutions for n=3:
..0..1....1..1....0..0....0..0....1..1....0..1....0..0....0..1....1..1....0..1
..0..0....1..1....1..1....0..1....1..0....0..1....0..1....0..1....0..0....0..1
..1..1....0..1....0..0....1..1....1..0....0..1....0..0....1..0....1..1....1..1
		

Crossrefs

Column 2 of A225982.

Formula

Empirical: a(n) = (11/120)*n^5 - (1/8)*n^4 + (9/8)*n^3 - (7/8)*n^2 + (287/60)*n - 1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(4 - 9*x + 18*x^2 - 5*x^3 + 2*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)