A225976 Number of n X 2 binary arrays whose sum with another n X 2 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.
4, 15, 48, 138, 350, 790, 1616, 3049, 5384, 9001, 14376, 22092, 32850, 47480, 66952, 92387, 125068, 166451, 218176, 282078, 360198, 454794, 568352, 703597, 863504, 1051309, 1270520, 1524928, 1818618, 2155980, 2541720, 2980871, 3478804, 4041239
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1....1..1....0..0....0..0....1..1....0..1....0..0....0..1....1..1....0..1 ..0..0....1..1....1..1....0..1....1..0....0..1....0..1....0..1....0..0....0..1 ..1..1....0..1....0..0....1..1....1..0....0..1....0..0....1..0....1..1....1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A225982.
Formula
Empirical: a(n) = (11/120)*n^5 - (1/8)*n^4 + (9/8)*n^3 - (7/8)*n^2 + (287/60)*n - 1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(4 - 9*x + 18*x^2 - 5*x^3 + 2*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)