A225977 Number of n X 3 binary arrays whose sum with another n X 3 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.
8, 48, 252, 1178, 4722, 16361, 49811, 135672, 336189, 768900, 1642668, 3310404, 6343682, 11635425, 20537903, 35044430, 58024377, 93522432, 147134436, 226473606, 341742522, 506427905, 738136947, 1059595772, 1499832509
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..1..1....0..1..1 ..1..0..0....0..1..0....1..1..1....1..0..1....0..1..0....0..1..0....0..0..1 ..1..1..1....0..1..1....0..1..0....0..0..1....0..0..1....0..1..1....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..101
Crossrefs
Column 3 of A225982.
Formula
Empirical: a(n) = (1/4320)*n^9 + (23/6720)*n^8 + (5/336)*n^7 - (1/288)*n^6 + (659/1440)*n^5 + (443/2880)*n^4 + (80/27)*n^3 - (6203/1008)*n^2 + (2459/140)*n - 6 for n>1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(8 - 32*x + 132*x^2 - 142*x^3 + 202*x^4 - 25*x^5 - 165*x^6 + 163*x^7 - 72*x^8 + 16*x^9 - x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)