cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A225976 Number of n X 2 binary arrays whose sum with another n X 2 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

4, 15, 48, 138, 350, 790, 1616, 3049, 5384, 9001, 14376, 22092, 32850, 47480, 66952, 92387, 125068, 166451, 218176, 282078, 360198, 454794, 568352, 703597, 863504, 1051309, 1270520, 1524928, 1818618, 2155980, 2541720, 2980871, 3478804, 4041239
Offset: 1

Views

Author

R. H. Hardin, May 22 2013

Keywords

Examples

			Some solutions for n=3:
..0..1....1..1....0..0....0..0....1..1....0..1....0..0....0..1....1..1....0..1
..0..0....1..1....1..1....0..1....1..0....0..1....0..1....0..1....0..0....0..1
..1..1....0..1....0..0....1..1....1..0....0..1....0..0....1..0....1..1....1..1
		

Crossrefs

Column 2 of A225982.

Formula

Empirical: a(n) = (11/120)*n^5 - (1/8)*n^4 + (9/8)*n^3 - (7/8)*n^2 + (287/60)*n - 1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(4 - 9*x + 18*x^2 - 5*x^3 + 2*x^4 + x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A225977 Number of n X 3 binary arrays whose sum with another n X 3 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

8, 48, 252, 1178, 4722, 16361, 49811, 135672, 336189, 768900, 1642668, 3310404, 6343682, 11635425, 20537903, 35044430, 58024377, 93522432, 147134436, 226473606, 341742522, 506427905, 738136947, 1059595772, 1499832509
Offset: 1

Views

Author

R. H. Hardin, May 22 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..1..1....0..1..1
..1..0..0....0..1..0....1..1..1....1..0..1....0..1..0....0..1..0....0..0..1
..1..1..1....0..1..1....0..1..0....0..0..1....0..0..1....0..1..1....1..0..0
		

Crossrefs

Column 3 of A225982.

Formula

Empirical: a(n) = (1/4320)*n^9 + (23/6720)*n^8 + (5/336)*n^7 - (1/288)*n^6 + (659/1440)*n^5 + (443/2880)*n^4 + (80/27)*n^3 - (6203/1008)*n^2 + (2459/140)*n - 6 for n>1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(8 - 32*x + 132*x^2 - 142*x^3 + 202*x^4 - 25*x^5 - 165*x^6 + 163*x^7 - 72*x^8 + 16*x^9 - x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)

A225978 Number of nX4 binary arrays whose sum with another nX4 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

15, 138, 1178, 9113, 61808, 361361, 1825607, 8065278, 31631401, 111785599, 360788468, 1075829429, 2993017696, 7832960008, 19417916324, 45865067963, 103734768130, 225619306783, 473616394498, 962612525277, 1899542726132
Offset: 1

Views

Author

R. H. Hardin May 22 2013

Keywords

Comments

Column 4 of A225982

Examples

			Some solutions for n=3
..0..0..0..1....0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1
..0..1..0..1....0..0..0..0....1..0..0..0....1..1..1..0....0..0..0..1
..1..0..1..1....1..0..0..1....0..0..0..1....0..1..0..0....1..1..0..1
		

Formula

Empirical: a(n) = (23/14820309504000)*n^17 + (397/2615348736000)*n^16 + (1429/217945728000)*n^15 + (21083/130767436800)*n^14 + (156407/62270208000)*n^13 + (375707/14370048000)*n^12 + (3136061/16765056000)*n^11 + (21563/22861440)*n^10 + (26402329/6096384000)*n^9 + (423919927/18289152000)*n^8 + (68634593/598752000)*n^7 + (144700261/1437004800)*n^6 + (19312991563/12108096000)*n^5 - (22496273857/4540536000)*n^4 + (97668459683/3027024000)*n^3 - (41460631/700700)*n^2 + (20134601/291720)*n - 23 for n>2

A225979 Number of nX5 binary arrays whose sum with another nX5 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

26, 350, 4722, 61808, 737893, 7718077, 69784592, 546720823, 3748375290, 22776885553, 124247348589, 615678539423, 2800456394451, 11798875157732, 46405595059222, 171524109659874, 599254527583339, 1988834906193438
Offset: 1

Views

Author

R. H. Hardin May 22 2013

Keywords

Comments

Column 5 of A225982

Examples

			Some solutions for n=3
..0..0..1..1..1....0..0..0..1..0....0..0..1..1..1....1..1..1..1..0
..0..0..0..0..0....1..1..1..1..1....0..0..0..1..1....0..1..1..1..1
..1..0..0..0..0....1..1..0..1..1....1..0..1..1..1....1..1..1..1..1
		

Formula

Empirical polynomial of degree 33 (see link above)

A225980 Number of nX6 binary arrays whose sum with another nX6 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

42, 790, 16361, 361361, 7718077, 148890101, 2513743785, 36836074434, 470279869497, 5279223820491, 52686610737385, 472630223607623, 3849896640784837, 28735919289705656, 198113452132002555
Offset: 1

Views

Author

R. H. Hardin May 22 2013

Keywords

Comments

Column 6 of A225982

Examples

			Some solutions for n=3
..0..0..1..1..1..1....0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..1..1..1
..1..0..0..0..0..1....0..1..0..0..1..0....0..1..0..0..0..0....0..0..0..0..0..1
..1..0..1..0..1..0....1..0..1..1..1..1....1..0..0..0..1..1....0..1..0..1..1..0
		

A225981 Number of nX7 binary arrays whose sum with another nX7 binary array containing no more than two 1s has rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

64, 1616, 49811, 1825607, 69784592, 2513743785, 80901937149, 2279339811483, 56056577764123, 1210023577040820, 23129995837890549, 395389054254892996, 6101927873439814335, 85761387564101647001
Offset: 1

Views

Author

R. H. Hardin May 22 2013

Keywords

Comments

Column 7 of A225982

Examples

			Some solutions for n=3
..0..0..1..1..0..1..1....0..0..0..1..1..1..1....0..0..1..1..1..1..1
..1..0..0..0..1..1..1....0..1..0..0..0..0..0....0..0..1..1..1..0..1
..1..1..0..0..1..1..1....1..1..0..0..0..1..0....1..1..0..1..1..0..1
		
Showing 1-6 of 6 results.