This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226020 #18 Jun 04 2013 00:16:00 %S A226020 13702,42997,1004062,1684462,38447662,40243549,70801087,107728582, %T A226020 409055062,594021862,760767262,1045475437,1104435202,1471700587, %U A226020 1686747562,1920806662,3136180162,3469071937,5291041297,7239716347,7903353667,12738885862,22711489762 %N A226020 Composite squarefree numbers n such that the ratio (n + 1/2)/(p(i) + 1/2) is an integer, where p(i) are the prime factors of n. %C A226020 Also composite squarefree numbers n such that (2*p(i)+1) | (2*n+1). %H A226020 Giovanni Resta, <a href="/A226020/b226020.txt">Table of n, a(n) for n = 1..65</a> (terms < 3*10^12) %e A226020 The prime factors of 13702 are 2, 13, 17 and 31. We see that (13702 + 1)/(2 + 1/2) = 5481, (13702 + 1/2)/(13 + 1/2) = 1015, (13702 + 1)/(17 + 1/2) = 783 and ( 13702 + 1/2)/(31 + 1/2) = 435. Hence 13702 is in the sequence. %e A226020 The prime factors of 1123545 are 3, 5 and 74903. We see that %e A226020 (1123545 + 1/2)/(3 + 1/2) = 321013, (1123545 + 1/2)/(5 + 1/2) = 204281 but (1123545 + 1/2)/(74903+ 1/2) = 321013/21401. Hence 1123545 is not in the sequence. %p A226020 with(numtheory); A226020:=proc(i, j) local c, d, n, ok, p; %p A226020 for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; %p A226020 for d from 1 to nops(p) do if p[d][2]>1 or not type((n+j)/(p[d][1]+j),integer) then ok:=0; break; fi; od; %p A226020 if ok=1 then print(n); fi; fi; od; end: A226020(10^9,1/2); %Y A226020 Cf. A208728, A225702-A225720, A226111-A226114. %K A226020 nonn,hard %O A226020 1,1 %A A226020 _Paolo P. Lava_, May 23 2013 %E A226020 a(9)-a(23) from _Giovanni Resta_, Jun 02 2013