A226022 A modified version of Catalan numbers.
1, 1, 2, 4, 12, 36, 112, 360, 1184, 3968, 13504, 46544, 162144, 570016, 2019648, 7204864, 25856896, 93288576, 338167296, 1231045376, 4498577408, 16496039936, 60681046016, 223860786432, 828040881664, 3070320123392
Offset: 0
Examples
a(0)=A000108(0), a(1)=A000108(1), a(2)=A000108(2), a(3)=A000108(3)-1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- N. J. Lord, Non-associative operations, Mathematics Magazine 60:3 (1987), pp. 174-177.
Crossrefs
Cf. A000108.
Programs
-
Mathematica
Table[Sum[(-1)^k*Binomial[n - 3 k + 1, k] CatalanNumber[n - 3 k], {k, 0, Floor[n/3]}], {n, 0, 25}] (* Michael De Vlieger, Sep 21 2017 *)
-
PARI
a(n)=sum(k=0,n\3,(-1)^k*binomial(n-3*k+1,k)*binomial(2*n-6*k,n-3*k)/(n-3*k+1)) for(n=0,30,print1(a(n),","))
Formula
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n-3*k+1,k)*A000108(n-3*k), where A000108(n) is the n-th Catalan number.
a(n) = Sum_{k=0..n-1} a(k)a(n-k) for n>3 just like the Catalan sequence formula.
Let A(x) be the g.f., then
(1) A(x)=1-x^3+x*A(x)^2
(2) A(x)=(1-sqrt(1-4*x+4*x^4))/(2*x)
(3) A(x)=(1-x^3)*C(x-x^4), where C(x)=1+x*C(x)^2=(1-sqrt(1-4*x))/(2*x) is the Catalan sequence.
To generalize for a operator where two parenthesis schemes of length m are the same just match the Catalan sequence for the first m-1 terms and then we would have a(m) = A000108(m)-1.
Then the generating B(x) function for this sequence would satisfy B(x)=1-x^m+x*B(x)^2 and B(x)=(1-sqrt(1+4*x^(m+1)-4*x))/(2*x).
The formula for the general sequence is b(n) = Sum_{k=0..floor(n/m)}(-1)^k*binomial(n-m*k+1,k)*A000108(n-m*k).
D-finite with recurrence (n+1)*a(n) +(n+2)*a(n-1) +(n+9)*a(n-2) +42*(-2*n+5)*a(n-3) +4*(n-5)*a(n-4) +20*(n-6)*a(n-5) +84*(n-7)*a(n-6)=0. - R. J. Mathar, May 23 2014
Comments