cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226026 Maximum fixed points under iteration of sum of cubes of digits in base n.

This page as a plain text file.
%I A226026 #21 Dec 03 2014 00:57:31
%S A226026 1,17,62,118,251,250,433,1052,407,1280,2002,1968,793,3052,5614,1456,
%T A226026 5337,5939,2413,5615,20217,11648,11080,31024,5425,1737,28027,26846,
%U A226026 17451,33535,10261,64019,23552,44937,30086,84870,17353,55243,48824,108936,58618,87977
%N A226026 Maximum fixed points under iteration of sum of cubes of digits in base n.
%C A226026 1 is considered a fixed point in all bases, 0 is not.
%C A226026 a(n)=1 iff A194025(n)=1.
%C A226026 In order for a number with d digits in base n to be a fixed point, it must satisfy the condition d*(n-1)^3<n^d, which can only occur when d<=4 for n>2. Because all binary numbers are "happy" (become 1 under iteration), there are no fixed points with more than 4 digits in any base.
%C A226026 Furthermore, 4-digit solutions of the form x0mm or xmmm (where m is n-1) represent extreme values of sum of cubed digits, and so 4-digit numbers can only be solutions if xn^3+n^2-1<=2n^3+x^3. For x=2 this reduces to n<=3, so any 4-digit solution must begin with 1 in bases above 3.
%H A226026 Christian N. K. Anderson, <a href="/A226026/b226026.txt">Table of n, a(n) for n = 2..1000</a>
%H A226026 Christian N. K. Anderson, <a href="/A226026/a226026_1.txt">Table of base, maximum fixed point, number of fixed points, and all fixed points</a> for base 2 to 1000.
%e A226026 In base 5, the numbers 1, 28 and 118 are written as 1, 103, and 433. The sum of the cubes of their digits are 1, 1+0^3+3^3=28, and 4^3+3^3+3^3=118. There are no other solutions, so a(5)=118.
%o A226026 (R) inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) }
%o A226026 yfp=vector("list",100)
%o A226026 for(b in 2:100) { fp=c()
%o A226026     for(w in 0:1) for(x in 1:b-1) for(y in 1:b-1) if((u1=w^3+x^3+y^3)<=(u2=w*b^3+x*b^2+y*b) & u1+b^3>u2+b-1)
%o A226026         if(length((z=which((1:b-1)*((1:b-1)^2-1)==u2-u1)-1))) fp=c(fp,u2+z)
%o A226026     yfp[[b]]=fp[-1]
%o A226026     cat("Base",b,":",fp,"\n")
%o A226026 }
%Y A226026 Number of fixed points in base n: A194025.
%Y A226026 All fixed points in base 10: A046197.
%Y A226026 Cf. A193583, A209242.
%K A226026 nonn,base
%O A226026 2,2
%A A226026 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, May 23 2013