A226028 Array T(j,k) of counts of internal lattice points within all Pythagorean triangles (see comments for array order).
3, 22, 17, 49, 103, 43, 69, 217, 244, 81, 156, 305, 505, 445, 131, 187, 671, 709, 913, 706, 193, 190, 793, 1546, 1281, 1441, 1027, 267, 295, 799, 1819, 2781, 2021, 2089, 1408, 353, 465, 1249, 1828, 3265, 4376, 2929, 2857, 1849, 451, 498, 1937, 2863, 3277, 5131, 6331, 4005, 3745, 2350, 561
Offset: 1
Examples
Array begins 3, 17, 43, 81, 131, ... 22, 103, 244, 445, ... 49, 217, 505, ... 69, 305, ... 156, ...
Links
- Eric W. Weisstein, MathWorld: Pick's Theorem
- Wikipedia, Pick's theorem
Programs
-
Mathematica
getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getpptpairs[j_] := (newlist=getpairs[j]; Table[{(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1)(2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, newlist[[m]][[1]]^2-newlist[[m]][[2]]^2, 2newlist[[m]][[1]]*newlist[[m]][[2]]}, {m, 1, Length[newlist]}]); lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 +dim-1, {dim}], 1] &, maxHeight], 1]; array[{x_, y_}] := (pptpair=table[[y]]; (x^2*pptpair[[2]]*pptpair[[3]])/2-x(pptpair[[2]]+pptpair[[3]]+1)/2+1); maxterms=20; table=Sort[Flatten[Table[getpptpairs[2p+1], {p, 1, maxterms}], 1]][[1;;maxterms]]; pairs=lexicographicLattice[{2, maxterms}]; Table[array[pairs[[n]]], {n, 1, maxterms(maxterms+1)/2}]
Comments