This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226031 #25 Dec 20 2020 08:13:22 %S A226031 1,1,0,1,1,0,1,2,4,0,1,3,16,22,0,1,4,36,161,130,0,1,5,64,525,1716,791, %T A226031 0,1,6,100,1222,8086,18832,4900,0,1,7,144,2360,24616,128248,210574, %U A226031 30738,0,1,8,196,4047,58730,510664,2072862,2385644,194634,0 %N A226031 Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A226031 Alois P. Heinz, <a href="/A226031/b226031.txt">Antidiagonals n = 0..140, flattened</a> %F A226031 A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1. %F A226031 A(n,k) = A071921(n,k*n). %e A226031 Square array A(n,k) begins: %e A226031 1, 1, 1, 1, 1, 1, ... %e A226031 0, 1, 2, 3, 4, 5, ... %e A226031 0, 4, 16, 36, 64, 100, ... %e A226031 0, 22, 161, 525, 1222, 2360, ... %e A226031 0, 130, 1716, 8086, 24616, 58730, ... %e A226031 0, 791, 18832, 128248, 510664, 1505205, ... %p A226031 A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)): %p A226031 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A226031 A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]]; %t A226031 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ *) %Y A226031 Columns k=0-2 give: A000007, A088536, A226012. %Y A226031 Rows n=0-2 give: A000012, A001477, A016742. %Y A226031 Main diagonal gives: A227402. %Y A226031 Cf. A071920. %K A226031 nonn,tabl %O A226031 0,8 %A A226031 _Alois P. Heinz_, May 23 2013