This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226036 #20 Sep 16 2017 00:27:08 %S A226036 1,0,58,66,57,104,46,70,144,98,59,59,105,70,66,107,102,46,150,124,105, %T A226036 105,145,71,146,47,145,65,69,115,70,70,71,152,142,104,106,106,103,44, %U A226036 66,66,146,142,189,151,50,62,141,101,107,107,47,104,151,102,186,76 %N A226036 Let abc... be the decimal expansion of n. a(n) is the number of iterations of the map n -> f(n) needed to reach the last number of the cycle, where f(n) = a^a + b^b + c^c + ... %C A226036 Additive persistence with powers of decimal digits: number of steps for "add digit(i) ^ digit(i)" operation to stabilize when started at n. %C A226036 Or number of distinct values obtained by iterating n -> A045503(n). %C A226036 We take 0^0 = 1. %C A226036 It is conjectured that the trajectory for every number converges to a single number. The growth of a(n) is very slow; for example, a(457) = 211, a(10337) = 213, a(16669) = 214, ... %H A226036 Michel Lagneau, <a href="/A226036/b226036.txt">Table of n, a(n) for n = 0..10000</a> %e A226036 a(0) = 1 because 0 -> 0^0 = 1 with 1 iteration; %e A226036 a(1) = 0 because 1 -> 1^1 => 0 iteration; %e A226036 a(354) = 4 because: %e A226036 354 -> 3^3 + 5^5 + 4^4 = 3408; %e A226036 3408 -> 3^3 + 4^4 + 0^0 + 8^8 = 16777500; %e A226036 16777500 -> 1^1 + 6^6 + 7^7 + 7^7 + 7^7 + 5^5 + 0^0 + 0^0 = 2520413; %e A226036 2520413 -> 2^2 + 5^5 + 2^2 + 0^0 + 4^4 + 1^1 + 3^3 = 3418 and %e A226036 3418 is the last number of the cycle because 3418 -> 16777500 is already in the trajectory. We obtain 4 iterations: 354 -> 3408 -> 16777500 -> 2520413 -> 3418. %p A226036 A000312:=proc(n) %p A226036 if n = 0 then 1; %p A226036 else add(d^d, d=convert(n, base, 10)) ; %p A226036 end if; %p A226036 end proc: %p A226036 A226036:= proc(n) %p A226036 local traj , c; %p A226036 traj := n ; %p A226036 c := [n] ; %p A226036 while true do %p A226036 traj := A000312(traj) ; %p A226036 if member(traj, c) then %p A226036 return nops(c)-1 ; %p A226036 end if; %p A226036 c := [op(c), traj] ; %p A226036 end do: %p A226036 end proc: %p A226036 seq(A226036(n), n=0..100) ; %t A226036 Unprotect[Power]; 0^0 = 1; Protect[Power]; f[n_] := (cnt++; id = IntegerDigits[n]; Total[id^id]); a[n_] := (cnt = 0; NestWhile[f, n, UnsameQ, All]; cnt-1); Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 24 2013 *) %Y A226036 Cf. A000312, A031348, A031349, A045503, A133500, A225974. %K A226036 nonn,base %O A226036 0,3 %A A226036 _Michel Lagneau_, May 24 2013