cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226040 a(n) = product{ p prime such that p divides n + 1 and p - 1 does not divide n }.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 3, 1, 5, 7, 11, 1, 3, 1, 13, 1, 7, 1, 15, 1, 1, 11, 17, 35, 3, 1, 19, 13, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 5, 17, 13, 1, 3, 55, 7, 19, 29, 1, 15, 1, 31, 7, 1, 13, 33, 1, 17, 23, 35, 1, 3, 1, 37, 5, 19, 77, 39
Offset: 0

Views

Author

Peter Luschny, May 26 2013

Keywords

Examples

			a(41) = 21 = 3*7 = product({2,3,7} setminus {2}).
		

Crossrefs

Programs

  • Maple
    s:= (p, n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
    A226040 := n -> mul(z, z = select(p->s(p,n), select('isprime', [$2..n])));
    seq(A226040(n), n=0..77);
  • Mathematica
    a[n_] := Times @@ Select[ FactorInteger[n+1][[All, 1]], !Divisible[n, #-1] &]; a[0] = 1; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
  • PARI
    a(n)=my(f=factor(n+1)[,1],s=1);prod(i=1,#f,if(n%(f[i]-1),f[i],1)) \\ Charles R Greathouse IV, Jun 27 2013
  • Sage
    def A226040(n):
        F = filter(lambda p: ((n+1) % p == 0) and (n % (p-1)), primes(n))
        return mul(F)
    [A226040(n) for n in (0..77)]
    

Formula

a(n) = A225481(n) / A141056(n).

A226039 Numbers k such that there exist primes p which divide k+1 and p-1 does not divide k.

Original entry on oeis.org

5, 9, 11, 13, 14, 17, 19, 20, 21, 23, 25, 27, 29, 32, 33, 34, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103
Offset: 1

Views

Author

Peter Luschny, May 27 2013

Keywords

Examples

			20 is in this list because 7 divides 21 but 6 does not divide 20.
		

Crossrefs

Programs

  • Maple
    s := (p,n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
    F := n -> select(p -> s(p,n), select('isprime', [$2..n]));
    A226039_list := n -> select(k -> [] <> F(k), [$0..n]);
    A226039_list(103);
  • Mathematica
    selQ[n_] := AnyTrue[Prime[Range[PrimePi[n+1]]], Divisible[n+1, #] && !Divisible[n, #-1]&];
    Select[Range[103], selQ] (* Jean-François Alcover, Jul 08 2019 *)
  • Sage
    def F(n): return any(p for p in primes(n) if (n+1) % p == 0 and n % (p-1) != 0)
    def A226039_list(n): return list(filter(F, (0..n)))
    A226039_list(103)
Showing 1-2 of 2 results.