A226039 Numbers k such that there exist primes p which divide k+1 and p-1 does not divide k.
5, 9, 11, 13, 14, 17, 19, 20, 21, 23, 25, 27, 29, 32, 33, 34, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103
Offset: 1
Keywords
Examples
20 is in this list because 7 divides 21 but 6 does not divide 20.
Links
- Peter Luschny, Generalized Bernoulli numbers.
Programs
-
Maple
s := (p,n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0); F := n -> select(p -> s(p,n), select('isprime', [$2..n])); A226039_list := n -> select(k -> [] <> F(k), [$0..n]); A226039_list(103);
-
Mathematica
selQ[n_] := AnyTrue[Prime[Range[PrimePi[n+1]]], Divisible[n+1, #] && !Divisible[n, #-1]&]; Select[Range[103], selQ] (* Jean-François Alcover, Jul 08 2019 *)
-
Sage
def F(n): return any(p for p in primes(n) if (n+1) % p == 0 and n % (p-1) != 0) def A226039_list(n): return list(filter(F, (0..n))) A226039_list(103)