cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226040 a(n) = product{ p prime such that p divides n + 1 and p - 1 does not divide n }.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 3, 1, 5, 7, 11, 1, 3, 1, 13, 1, 7, 1, 15, 1, 1, 11, 17, 35, 3, 1, 19, 13, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 5, 17, 13, 1, 3, 55, 7, 19, 29, 1, 15, 1, 31, 7, 1, 13, 33, 1, 17, 23, 35, 1, 3, 1, 37, 5, 19, 77, 39
Offset: 0

Views

Author

Peter Luschny, May 26 2013

Keywords

Examples

			a(41) = 21 = 3*7 = product({2,3,7} setminus {2}).
		

Crossrefs

Programs

  • Maple
    s:= (p, n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
    A226040 := n -> mul(z, z = select(p->s(p,n), select('isprime', [$2..n])));
    seq(A226040(n), n=0..77);
  • Mathematica
    a[n_] := Times @@ Select[ FactorInteger[n+1][[All, 1]], !Divisible[n, #-1] &]; a[0] = 1; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
  • PARI
    a(n)=my(f=factor(n+1)[,1],s=1);prod(i=1,#f,if(n%(f[i]-1),f[i],1)) \\ Charles R Greathouse IV, Jun 27 2013
  • Sage
    def A226040(n):
        F = filter(lambda p: ((n+1) % p == 0) and (n % (p-1)), primes(n))
        return mul(F)
    [A226040(n) for n in (0..77)]
    

Formula

a(n) = A225481(n) / A141056(n).