This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226048 #66 May 05 2023 09:43:25 %S A226048 1,1,1,1,1,1,3,1,1,1,2,6,6,6,2,1,1,2,10,14,22,14,10,2,1,1,3,15,32,60, %T A226048 66,60,32,15,3,1,1,3,21,55,135,198,246,198,135,55,21,3,1,1,4,28,94, %U A226048 266,508,777,868,777,508,266,94,28,4,1,1,4,36 %N A226048 Irregular triangle read by rows: T(n,k) is the number of binary pattern classes in the (2,n)-rectangular grid with k '1's and (2n-k) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other. %C A226048 Sum of rows (see example) gives A225826. %C A226048 This triangle is to A225826 as Losanitsch's triangle A034851 is to A005418. %C A226048 By columns: %C A226048 T(n,1) is A004526. %C A226048 T(n,2) is A000217. %C A226048 T(n,3) is A225972. %C A226048 T(n,4) is A071239. %C A226048 T(n,5) is A222715. %C A226048 T(n,6) is A228581. %C A226048 T(n,7) is A228582. %C A226048 T(n,8) is A228583. %C A226048 Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X 2 rectangle under all symmetry operations of the rectangle. - _Christopher Hunt Gribble_, Feb 16 2014 %H A226048 Yosu Yurramendi and María Merino, <a href="/A226048/b226048.txt">Rows 0..40 of triangle, flattened</a> %F A226048 If k even, 4*T(n,k) = binomial(2*n,k) +3*binomial(n,k/2). - _Yosu Yurramendi_, _María Merino_, Aug 25 2013 %F A226048 If k odd, 4*T(n,k) = 4*T(n,k) = binomial(2*n,k) +(1-(-1)^n)*binomial(n-1,(k-1)/2). - _Yosu Yurramendi_, _María Merino_, Aug 25 2013 [corrected by _Christian Barrientos_, Jun 14 2018] %e A226048 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A226048 0 1 %e A226048 1 1 1 1 %e A226048 2 1 1 3 1 1 %e A226048 3 1 2 6 6 6 2 1 %e A226048 4 1 2 10 14 22 14 10 2 1 %e A226048 5 1 3 15 32 60 66 60 32 15 3 1 %e A226048 6 1 3 21 55 135 198 246 198 135 55 21 3 1 %e A226048 7 1 4 28 94 266 508 777 868 777 508 266 94 28 4 1 %e A226048 8 1 4 36 140... %e A226048 ... %e A226048 The length of row n is 2*n+1, so n>= floor((k+1)/2). %p A226048 A226048 := proc(n,k) %p A226048 if type(k,'even') then %p A226048 binomial(2*n,k) +3*binomial(n,k/2) ; %p A226048 else %p A226048 binomial(2*n,k) +(1-(-1)^n)*binomial(n-1,(k-1)/2) ; %p A226048 end if ; %p A226048 %/4 ; %p A226048 end proc: %p A226048 seq(seq(A226048(n,k),k=0..2*n),n=0..8) ; # _R. J. Mathar_, Jun 07 2020 %t A226048 T[n_, k_] := If[EvenQ[k], %t A226048 Binomial[2n, k] + 3 Binomial[n, k/2], %t A226048 Binomial[2n, k] + (1-(-1)^n) Binomial[n-1, (k-1)/2]]/4; %t A226048 Table[T[n, k], {n, 0, 8}, { k, 0, 2n}] // Flatten (* _Jean-François Alcover_, May 05 2023 *) %Y A226048 Cf. A225826, A005418, A034851. %K A226048 nonn,tabf %O A226048 0,7 %A A226048 _Yosu Yurramendi_, May 24 2013 %E A226048 Definition corrected by _María Merino_, May 19 2017