cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226063 Number of fixed points in base n for the sum of the fourth power of its digits.

Original entry on oeis.org

1, 1, 3, 4, 1, 1, 7, 3, 4, 3, 1, 2, 1, 7, 2, 2, 1, 4, 2, 6, 2, 3, 1, 3, 1, 11, 3, 3, 2, 2, 7, 4, 1, 4, 3, 1, 3, 4, 1, 2, 2, 2, 3, 4, 2, 2, 1, 2, 1, 2, 1, 2, 4, 3, 3, 2, 2, 1, 3, 2, 5, 2, 9, 2, 1, 2, 1, 1, 3, 2, 2, 1, 2, 5, 1, 5, 5, 4, 2, 5, 3, 2, 2, 3, 3, 1, 2
Offset: 2

Views

Author

Keywords

Comments

All fixed points in base n have at most 5 digits. Proof: In order to be a fixed point, a number with d digits in base n must meet the condition n^d <= d*(n-1)^4, which is only possible for d < 5.
For 5-digit numbers vwxyz in base n, only numbers where v*n^4 + n^3 - 1 <= v^4 + 3*(n-1)^4 or v*n^4 + n^4 - 1 <= v^4 + 4*(n-1)^4 are possible fixed points. v <= 2 for n <= 250.

Examples

			For a(8)=7, the solutions are {1,16,17,256,257,272,273}. In base 8, these are written as {1, 20, 21, 400, 401, 420, 421}. Because 1^4 = 1, 2^4 + 0^4 = 16, 2^4 + 1^4 = 17, 4^4 + 0^4 + 0^4 = 256, etc., these are the fixed points in base 8.
		

Crossrefs

Cf. A226064 (greatest fixed point).
Cf. A052455 (fixed points in base 10).

Programs

  • R
    inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) }
    yn=rep(NA,20)
    for(b in 2:20) yn[b]=sum(sapply(1:(1.5*b^4),function(x) sum(inbase(x,b)^4))==1:(1.5*b^4)); yn